
JOYCE FRIEDMAN AND DAVID S. WARREN

A PARSING METHOD FOR MONTAGUE GRAMMARS

ABSTRACT. The main result in this paper is a method for obtaining derivation trees from
sentences of certain formal grammars. No parsing algorithm was previously known to exist for
these grammars.

Applied to Montague’s FTQ the method produces all parses that cou!d correspond to
different meanings. The technique directly addresses scope and reference and provides a
framework for examining these phenomena. The solution for FTQ is implemented in an
efficient and useful computer program.

‘Ibis research was supported in part by National Science Foundation Grants BNS 76-23840
and MC8 76-04297.

INTRODUCTION

This paper describes an original parsing algorithm that handles quantifier
scope and pronoun reference. The parsing method is applicable to formal
grammars that use substitution rules ta bind variables. The parsing prob-
lem for these grammars has not previously been investigated. In develop-
ing the algorithm we had in mind the grammar presented by Richard
Montague in The proper treatment of quantification in ordinary i3nglish
(PTQ). Our solution provides a general framework in which to consider
problems of scope and reference. It is implemented in a practical parsing
system that can be used in linguistic investigations.

The parsing method obtains derivation trees from sentences of a gram-
mar. A major difficulty arises because each sentence in such a grammar has
infinitely many derivations. Our method obtains a finite set of represen-
tative parses that is adequate to characterize the full infinite set. The finite
set contains all parses that could reasonably correspond to different mean-
ings.

The interesting and difficult part of the problem is how to incorporate
the rules of quantification. Our algorithm solves this in a natural way that
provides a more general framework in which to address problems related
to scope and reference.

THE PARSING PROBLEM

The formal grammars investigated here are exemplified by the grammar of
Montague’s PTQ. PTQ gives both the syntax and semantics of a fragment

Linguistics and Philosophy 2 (1978) 347-372. All Rights Reserved.
Copyright @ 1978 by D. Reidel Publishing Company, Dordrecht, Holland

348 JOYCE FRIE-DMAN AND DAVID S. WARREN

of English. The syntax is presented by an inductive definition of the sets of
phrases, beginning with sets of basic lexical phrases. Compound phrases
combine subphrases of specified syntactic categories to create new phrases
of a particular category. The semantics is given by translation to an
intensional logic. Each derivation tree for a phrase translates to a distinct
logical formula. Parsing a phrase to find the possible derivation trees is thus
a necessary first step in finding its meanings.

A sentence may have many derivation trees. This does not necessarily
make it ambiguous. The logical formulas obtained may be equivalent, so
that two derivation trees correspond to the same meaning. To find all
meanings, we must find at least one derivation tree for each possible
meaning.

The grammar of PTQ actually gives infinitely many derivation trees for
each sentence, as we show below. Since there are infinitely many deriva-
tions, no parser can produce them all. However, each phrase has only
finitely many meanings. We would like to produce only a finite set of parse
trees, and at the same time obtain all meanings.

One might attempt to use the inductive definition directly and simply
add a criterion for stopping after all the meanings have been obtained. No
straightforward way of doing this is apparent. Instead of attempting to
provide a stopping criterion, we chose a more efficient alternative approach
that yields only the derivation trees of interest. We define a restricted
grammar, which yields only finitely many derivation trees for any input ana
is sufficient to produce all meanings of any sentence.

Uses of a Parser

For complex grammars a parsing method can be a valuable tool in
theoretical investigations. As examples, we cite two discussions from the
literature:

(1) In a discussion of an extension to PTQ, Thomason (1974) writes:

It is possible to construct rigorous proofs that certain expressions . . . are not generable as
sentences in this fragment. Such results require a large number of lemmas, whose proofs,
though not difficult, involve a detailed examination of the syntactic rules of the fragment. . . .

Though it’s clear that the mere fact that one way of trying to generate an expression is
blocked wig not s&ice to demonstrate that all ways will be blocked, transformational& have
tended to accept such ‘demonstrations’ and have neglected to develop adequate mechanisms
for establishing ungrammaticality. I believe that this has been unfortunate; it eliminates a
powerful incentive to make rules simple and their formulations precise.

Parsing can show that an expression is not generable. Indeed, this
requires only a recognizer, a simpler algorithm that does not yield the
derivation trees but merely decides whether or not one exists. Once it is

A PARSING METHOD FOR MONTAGUE GRAMMARS 349

shown that the parsing method is correct, proofs for an individual expres-
sion are no longer needed. The parsing method will determine its deriva-
tions if it is generable. Notice also that the need to prepare the rules of the
grammar for formal use can provide the ‘powerful incentive’ suggested by
Thomason.

(2) Since our parsing method produces all semantically distinct deriva-
tion trees, it can be used to demonstrate that a certain meaning can be
obtained only by using a particular rule. Partee (1975) writes:

The rule of C&scope quantification plays a crucial role in certain cases, although the crucial
examples are much less obvious in FTQ than they would be if Montague had included
CN-phrases like friend of him . . .

(60) Every man who has lost a pen who does not find it will walk slowly.

The reader can verify that the CN-scope quantification rule must bc applied to the UU-phrase
man such that he has lost him1 swzh that he a+ not find him, in order to derive (60) on the
reading where a pen has narrower scope than euery but binds the pronoun it, and that there is
no way to derive the sentence on that reading without the rule of CN-scope quantification.

How could the reader verify this? One way would be to construct each
derivation of the sentence not using the rule of CN-scope quantification
and to translate it into intensional logic. This could establish that the
reading discussed is not obtained. This process is not one to which the term
‘verification’ is usually applied. It is in the spirit of a creative proof, unless a
parsing algorithm is available to produce the derivations. Using our
algorithm we find that there are ten parses of the closest sentence of PTQ,
namely,

Every man such-that he has lost a pen such-that he doesn’tfind
it will walk slowly.

By examining the translations, we see that the only parse to produce the
desired meaning does indeed use the CN-scope quantification rule.

Our algorithm is implemented in a computer program, which applies it
to any input and gives the parse trees automatically. The program frees the
linguist from the time and tedium of accurately following the steps of the
algorithm. Clearly, using the parsing program does not take away the need
for creativity in constructing examples. Their verification can appropriately
be done by a computer.

PARSING PTQ

Each of our derivation trees is exactly the same as a derivation tree for
PTQ. The language of the modified grammar is essentially the same as the

350 JOYCE FRIEDMAN AND DAVID S. WARREN

language of PTQ; we chose not to include sentences containing free vari-
ables because they do not occur in English. They could easily be included.
With this exception the language is that of PTQ. Henceforth, when we
refer to PTQ, we refer to the modified grammar and language.

The reader is assumed to be familiar with the syntactic rules of PTQ. We
include them in an Appendix for easy reference.*

Infinitely Many Derivations

Every sentence in the language of PTQ has an infinite number of different
derivations in the grammar of PTQ. There ale at least three ways that this
can happen. First, vacuous applications of rules S14-S16 can be nested
arbitrarily deeply. For example, by rule S14, we may generate a sentence
by substituting a unicorn, a term phrase, for he0 in the sentence John loves
Mary. This yields the structure of Figure 1 for the sentence John loves
Mary. Since any term could be substituted in place of a unicorn, or a
unicorn could be substituted any number of times, we clearly have an
infinite number of derivations. Second, from any derivation tree that
contains some variable hej, another can be obtained by choosing a new
variable hei that does not occur in the tree, and uniformly replacing all
occurrences of hei with hei. This gives a new derivation. For instance, by
replacing he0 by hea3, in the tree of Figure 1, we get another derivation for
John loves Mary. Finally, any one of the rules S14-S16 can be used
repeatedly to substitute one free variable for another. In this way also,
infinitely many derivations for a single sentence may be obtained.

A parser for a grammar that has infinitely many derivations for a single
sentence cannot be useful in the ways discussed above: if there are

I I

heo , T ~ ~~ P -I?

a
I I I

unicorn John

A!
1y-E

100X?

Fig. 1 Vacuous Application of Sl4.

* The rules given here first appeared in Hintikka et ai (Eds.), Approaches to Natural
Language, D. Reidel, Dordrecht, 1973, pp. 224-225.

A PARSING METHOD FOR MONTAGUE GRAMMARS 351

infinitely many derivations, we can never obtain them all. Furthermore, at
no point can we be sure that we have found all the interesting ones. No
parser that represents PTQ directly can avoid these problems.

Which Derivations?

The question now arises as to which of the infinitely many derivations of a
given sentence to take as interesting. The principle used to make these
decisions is based on the semantics associated with the structures. Varia-
tions of a structure which in all circumstances have the same semantics are
not generated.

There is a technical problem with the semantics of sentences containing
vacuous applications of rules S14416. The parse tree of Figure 1 contains
a vacuous substitution of a unicorn. For this tree the sentence John loves
Mary has the semantics ‘there is an X such that X is a unicorn and John
loves Mary’. Since John loves Mary does not necessarily entail the exis-
tence of unicorns, this parse is clearly not desired. One way to eliminate it
is to reformulate the substitution rules S14.416 so that vacuous appli-
cations are not allowed. Vacuous applications of S3, while perhaps not
being acceptable syntactically, have no similar problem with their seman-
tics.

This parsing system produces no derivations that contain a vacuous
application of any rules S14416. Only one variant of each derivation is
produced, that is, no two trees which differ only in variable numbers are
produced. Also no tree which contains a use of a substitution rule in which
one variable is substituted for another is produced. However, vacuous
applications of S3 are produced.

It is important to notice that (1) no meanings are lost, and (2) for a given
sentence and meaning, any lost tree is like one kept except in having
variable for variable substitutions or in having different variables. Thus in
the Partee example cited above, where the only trees produced for a
particular meaning used the CN-scope rule S15, the lost trees for this
meaning must also have used S15.

TRANSITION NETWORK GRAMMARS

Montague gave his inductive definition of the language of PTQ using
English as the metalanguage. We give our inductive definition of the
language as a nondeterministic algorithm expressed in a formalism appro-
priate to a computer, an augmented transition network (ATN). The A’IN
was first developed as a representation of natural language grammars by

352 JOYCE FRIEDMAN AND DAVID S. WARREN

Thorne, Bratley, and Dewar (1968). Woods (1970) further developed the
concept into an extended form that is readily understandable and usable.
The ATN used here is based on that form.

An augmented transition network represents a grammar as an underly-
ing context-free component with augmentations of various sorts. The
grammar of PTQ has an underlying categorial, hence context-free,
component that is augmented with substitution rules. Thus the ATN seems
a natural representation.

An ATN represents a grammar as a network. It may be used for either
parsing or generation. A parser takes as inputs an ATN and a sentence. Its
output is the set of parses of that sentence with respect to the ATN. A
parse is a derivation tree or analysis tree for the sentence. It corresponds to
a path through the ATN.

We now describe the ATN formalism. As our example we use the
context-free part of the grammar of PTQ. We develop this grammar in
steps, going from a simple finite-state network through a series of incre-
ments until a final context-free net is reached. The remainder of this
section is thus essentially a tutorial on ATN’s. Readers familiar with the
ATN formalism can move rapidly to the discussion, in the next section, of
the more interesting aspects of the solution to the parsing problem for
P-I-Q.

Finite-state Networks

A finite-state grammar can be represented graphically as a network of
nodes and directed arcs. The nodes correspond to nonterminal symbols
and the arc labels to terminal or category symbols. The sequence of
terminals that make up a sentence can be read by concatenating the arc
labels on a path from the initial node to a final node.

For example, the finite-state grammar of Figure 2 can be represented as
Net-l, the network of Figure 3.

The nonterminal category TS, sentence, labels the initial node. We use
T8 for the type of sentences (Montague’s t), and TR for the type of terms
(Montague’s T). The lexical or terminal categories are bte, basic terms;
biv/te, basic transitive verbs; and biv, basic intransitive verbs. A lexicon

TS + bteIV
IV + biv/te TE
IV + biv
TE + bte

Fig. 2 A Finite-State Grammar.

A PARSING METHOD FOR MONTAGUE GRAMMARS 353

btt

Fig. 3 Net-l, a Finite-State Network.

gives the English phrases of each terminal category. Suppose bte contains
John and Mary, biv/te contains loves, and biv contains runs. Then John
loves Mary and John runs are among the sentences represented.

Net-l is simply an alternative way of presenting the grammar of Figure
2. The grammar can be used in generating sentences or in parsing them,
and the same is true of the network. In describing a network we sometimes
refer to an arc as ‘accepting’ a phrase, but we may equally well think of it
as ‘generating’ the phrase. The net itself is independent of its use.

The set of sentences of this net is finite, but that is not intrinsic to
finite-state networks. If we add an arc from node TS to itself and label it
with the category bts/ts containing necessarily, then for each sentence S of
the language there is also the sentence necessarily S.

Recursive Transition Networks

A first step in increasing the power of the representation is to allow recursion
by the use of nonterminal symbols as arc labels, as in Net-2 of Figure 4.

biv

Fig. 4 Net-2. a Recursive Transition Network.

354 JOYCE FRIEDMAN AND DAVID S. WARREN

These nonterminal symbols also name nodes. To traverse an arc labeled
with a nonterminal symbol, one traverses the subnet whose initial node has
that name. The nodes with double circles are final states; the outgoing
arrow indicates a return to the position in the higher net from which this
net was entered.

conj

btc

Fig. 5 Net-3, a Context-Free Subnet of the FTQ Net.

A PARSING METHOD FOR MONTAGUE GRAMMARS 355

Suppose biv/ts contains believes-that and asserts-that. Then Net-2
represents all the sentences previously obtained, and also all sentences in
which the verb phrase is believes-that S or asserts-that S, where S is any
sentence.

Recursive transition networks correspond exactly to context-free
grammars. Figure 5 shows Net-3, the part of the PTQ net that includes the
syntactic rules S2, S4 through S13, and S17. All of these rules are essen-
tially context-free: they concatenate their subparts.

Consider the simple sentence John loves Mary. John and Mary are words
in the basic category bte, basic term phrases; loves is a basic transitive verb,
category biv/te. John loves Mary is obtained on exactly one path through
Net-3. The net is entered at T’S, the sentence node. A sentence can begin
with a term TE, a sentence-modifier bts/ts (of which there is only one,
necessarily), or a sentence TS The TE arc leading from the initial TS node
represents entry into the TE subnet. John is a bte, so the TE subnet returns
from TE4 to the TS net at node Tl. The possible continuations are the IV
and aux arcs; here the IV arc is used. IV is a nonterminal symbol and as
such it names a subnet. Examination of the IV subnet shows that an IV can
begin with a word of any of four basic categories or can be a conjunction of
IV’s. Here the second arc, biv/te, is the only successful category arc. The
TE subnet is then entered again. Since Mary is a bte, the TE net is
traversed on its first arc, returning to the final state IV3 of the IV net, and
from here to T4, the final state of the TS net. Return from the TS net
signals that a sentence has been recognized. Figure 6 shows schematically
this path through the net.

Fig. 6 Path Through Net-3 for John knws Maty.

356 JOYCE FRIEDMAN AND DAVID S. WARREN

In the discussion so far we have shown how the net recognizes a
sentence. For this it suffices to establish that there is some path for the
sentence through the net. Multiple paths correspond to syntactic ambi-
guity, because each path through the net yields a different derivation of the
sentence. Since the meaning of a sentence is a function of the derivation
tree, semantic ambiguity may also result. Since we are interested in obtain-
ing all meanings of a sentence, the net is used as a parser, that is to produce
sentence structure. This is done by building a tree in each subnet to
represent the structure of the string recognized by the subnet. This tree is
then returned to a higher net where it is used as a subtree in a larger
construction.

Fig. 7 Parse Tree for John loves Mary.

Figure 7 shows the parse tree for John loves Mary. Category names are
included in the figures to aid the discussion. They are not produced by the
parser, since the rule names uniquely determine them.

Augmented Transition Networks

An augmented transition network is a recursive transition network in
which computations are performed while traversing the path through the
net. These computations are specified by writing instructions on the arcs.
They alter the conditions under which the arc can be traversed and also
allow information to be saved and used later. Since these instructions can
be arbitrary, the language that is represented by the network no longer
need be context-free. These augmentations do not alter the structure of the
net.

A PARSING METHOD FOR MONTAGUE GRAMMARS 357

The first augmented network has the structure of Net-3 (Figure 5), but
with additional computations on certain arcs. These particular additions
implement language features that could alternatively be treated in a larger
context-free net. Verb type is handled by transmitting information from
each arc labeled IV to the IV subnet to indicate whether the verb form
should be finite or infinite. The subnet uses this and additional information
from the lexicon to decide on the correct form. Problems peculiar to
conjunction are handled similarly.

PARSING FOR SCOPE AND REFERENCE

At this point our introductory description of the ATN formalism is
complete. Net-3 gave all the essentially context-free rules. We can now
proceed to describe our particular solution to the problems in parsing
Montague grammars.

The most interesting contribution of our algorithm is in the treatment of
pronouns and substitution rules. Montague gives four rules for
quantification and pronoun reference. These are the relative clause rule S3
and the three quantification rules S14 through S16, which are not context-
free.

We describe our solution as though we were first finding an underlying
context-free structure and then traversing it to resolve questions of
reference and quantification. In actuality the algorithm makes only one
pass. It handles pronouns and quantifiers as it builds the tree.

Context-free Treatment of Pronouns

To help describe how the substitution rules are parsed, we first give an
incomplete treatment of pronouns which is context-free. Net-4 (Figure 8)
shows a grammar that has pronouns and has a simpler version of S3. Net-4
differs structurally from Net-3 only in its CN and TE subnets.

Net-4 accepts sentences with pronouns and with relative clauses, but
does not associate the pronouns with antecedents. Thus, for example, it
accepts She run.r and Mary loves a man such-that it runs. The treatment of
pronouns is complicated by the need to check their case. We assume first
that he, she, it, him, and her are added as basic pronouns and are appro-
priately marked for case as NOM or ACC or both. To extend the net for
pronouns, one new arc is added at TE to accept pronouns as term phrases.

358 JOYCE FRIEDMAN AND DAVID S. WARREN

A test in this new pronoun arc checks that the pronoun has the required
case. The required case is determined before entering the TE subnet,
either in the subject arc at TS or in the object arc at IV2.

Without relative clauses the CN subnet had only to look for a basic
common noun and return it. To allow relative clauses the CN net is

bte

Fig. 8 Net-4, the Context-free Net with Pronouns and Relative Clauses.

A PARSING METHOD FOR MONTAGUE GRAMMARS 359

modified. Node CN still has only its one arc. Node CN2 gets an additional
arc which recognizes such-that. At CN3 the sentence of the relative clause is
found and the whole S3 construction stored. This yields, for example, the
tree of Figure 9.

Fig. 9 Common Noun Tree.

Rules of Quantifzcation

The crucial final step in constructing a parser for PTQ is to add to the net
the full version of S3 and the substitution rules S14 through S16. These
rules present difficulties in the design of the algorithm; it needs to be more
complex than might at first appear. There are constraints on the ways that
the substitution rules can be applied. Substitution rules combine a term and
a subtree containing free variables in a way similar to the way in which a
quantification rule in predicate logic combines a variable and a subformula.
An application of a substitution rule consists in substituting a term for all
occurrences of a variable in a subphrase. In translation the term cor-
responds to a quantifier, the variable to its bound variable, and the sub-
phrase to its scope. Much of the ambiguity in the formal English of F’TQ
arises from differences in the scope and order of applications of the
substitution rules.

Net-4 contains all of the structure of PTQ, but is not yet augmented for
the strictly non-context-free parts of S3 and the substitution rules S14-
S16. This is done in PTQNET, which is structurally the same as Net-4
(Figure 8).

In order to find a derivation for a sentence that includes an application of
a substitution rule, the fact of the use of the rule, the scope of the rule, and
the variables bound by this use must all be determined. To help understand
how a parse tree containing an occurrence of a substitution rule is con-
structed, we may think of PTQNET as traversing the Net-4 context-free
parse tree and performing operations on that tree to obtain the full parse.
The order of traversal of the parse tree is left-to-right and depth-first. For

360 JOYCE FRIEDMAN AND DAVID S. WARREN

example, in Figure 7 above, the nodes are traversed in the following order:
TS, first TE, TS, IV, IV/TE, IV, second TE, IV, TS. Note that each
nonterminal node is traversed more than once.

In general, any term phrase encountered can either be entered immedi-
ately into the tree, or can be substituted in later by an application of a
substitution rule at some higher node. Therefore, a choice is made
whenever a term phrase is encountered. One alternative is to insert the
term phrase directly. The other is to enter a variable in place of the phrase
and later bind this variable through the application of a substitution rule.
Different parses result from these alternatives.

To handle the substitution rules, two sets of bindings are maintained at
each node in the tree. A binding is a paired variable and term phrase. Each
binding will correspond to an instance of a substitution rule in which a
phrase is substituted for its variable. The FVB-set (Free Variables Below)
contains bindings created at this node or passed up from FVB-sets below.
After a binding is used in a substitution rule, its variable is no longer free so
the binding does not get passed up to the FVB-set above. Consequently,
the completed FVB-set is the set of bindings for all free variables
dominated by the current node. The second set is the SA-set (Substitutions
Above). The SA-set for a node consists of the bindings passed down from
the SA-set and FVB-set of its dominating node. The SA-set and the
FVB-set of a node together contain each binding that corresponds to a
substitution that will include the node in its scope.

We now outline the general method for parsing substitution rules. It is
illustrated by examples below. The FVB-sets and SA-sets for each node
are determined dynamically during a traversal of the context-free parse
tree. When a term that is not a pronoun is encountered, it may be replaced
by a new free variable and the corresponding binding placed in the FVB-
set. The FVB-set for each node is also extended each time the node is
reached from below by including the bindings in the FVB-set of the
dominated node. On the final traversal through an IV, TS, or CN node, a
binding in its FVB-set indicates that a substitution rule may be applied
there. If it is applied, that binding is not passed up to the FVB-set of the
dominating node. Pronouns are handled through the use of the SA-sets,
which contain bindings for all substitution application above the node.
When a node is reached from above, its SA-set is created as the union of
both the FVB-set and the SA-set of the immediately dominating node.
When a pronoun is encountered, its antecedent is determined by searching
the SA-set for a binding that contains a term phrase of the correct gender.

The algorithm is illustrated by the example of Figure 10. It gives two
parses for the simple sentence John loves Mary. The parse in Figure 10a is

A PARSING METHOD FOR MONTAGUE GRAMMARS 361

T

IV,> TE

IA? Mary die hl? 0

10a Using NET-S. lob Using F’TQNET.

Fig. 10 Example for S14.

obtained using Net-4. The parse in Figure lob uses the substitution rule S14
and thus requires PTQNET.

Consider how to construct the tree lob during a traversal of tree 1Oa.
This example shows how the FVB-sets are maintained and used to deter-
mine applications of a substitution rule. The first entry into an FVB-set
occurs when Mary is encountered and we are about to return to the
immediately dominating IV node. At this point it can be decided that this
term, M&y, is the term substituted over some dominating node by a
substitution rule. In this case the term is not to be entered into the tree at
this point. Instead a new variable is taken and paired with Mary to
generate the binding (he0 Mary). The variable, he,-,, is entered in the tree
instead of Mary. The binding is entered into the FVB-set for the TE node
since this node dominates the free variable heo. When return is made to the
immediately dominating IV node, this binding is added to its FVB-set,
since it also spans this free variable. Similarly, the binding is added to the
FVB-set of node TS. Note that lob contains a copy of 10a with Mary
replaced by he,,. Now since we are about to leave a TS node and its
FVB-set contains a binding to which S14 can apply, we choose to apply it
here. The binding indicates the term to be substituted for the free variable,
so we construct the tree of lob. Note that the binding (he0 Mary) does not
then go up to the FVB-set of the new top TS node, since he0 is not free
below it.

This example shows how the FVB-sets are used to determine the scope
of substitution rule instances. There is another similar parse of this
sentence, John loves Mary, in which the substitution rule has a different
scope. This parse, shown in Figure 11, uses the substitution rule S16, which
substitutes over intransitive verb phrases. Traversal continues as before

362 JOYCE FRIEDMAN AND DAVID S. WARREN

Fig. 11 Example for S16.

until we are about to return from the IV node back to the TS node.
Remember that the FVB-set for this IV node contains the binding (he,,
Mary). At this point we decide to insert an application of rule S16 since
there is a free variable below waiting to be bound. The instance of rule S16
is inserted in the tree here; the binding does not go up to the FVB-set of
the dominating T’S node as it did in Figure 10. The tree of Figure 11 results.

Note that new bindings are added to the FVB-sets only when a term is
encountered. Since substitution rules are only entered in a tree as the result
of a binding, no vacuous applications are ever generated. Also note that for
the tree to be acceptable as a parse, the FVB-set of the top TS node must
be empty, indicating that all the free variables in the tree have been
substituted for.

Parsing Pronouns

The other major problem with respect to the substitution rules is the
correct parsing of pronouns. Recall that, using Net-4, antecedents of
pronouns were not found. Sentences that contained a pronoun with no
antecedent or with an apparent antecedent of different gender were accept-
ed. In PTQNET, the SA-sets are used to solve this problem. Consider the
parses of Figure 12 for the sentence, John lovesMary and she loves him. Tree
12a is a Wet-4 parse and tree 12b is a PTQNET parse. Tree 12b can be
constructed during a traversal of tree 12a in the left-to-right depth-first
order (that is, TS-0, TS-1, TE-1, TS-1, IV-l, IV/TE-1, IV-l, TE-2, IV-l,
TS-1, TS-0, TS-2, TE-3, TS-2, IV-2, IV/TE-2, IV-2, TE-4, IV-2, TS-2,
TS-0.) Suppose that in the traversal of the first half of this tree John and
Mary are both replaced by variables and entered in the FVB-sets. After
returning to TS-0 and before moving on to TS-2, (he0 John) and (he1 Mary)

A PARSING METHOD FOR MONTAGUE GRAMMARS 363

TS-0

41

I I I

5-l
and l-s-2

Al

si

7’ I
e-2

T”
John

I”&L+L2 she I&&l TE-4

lo!x M&V loix him

Fig. 12~1 Net-4 Parse.

Ts

d4

-h heo. ‘;”

John si4

I I I
he1

T T
MarY Sll

I I I
l-s and

Sk
‘;”

A 4-l
T ‘Y T Y

he0 ,,,I JUG J-+
TE TE

Ah? hb, low hL 0

Fig. 12b PTQNETParse.

Pronoun Antecedents
John loves Mary and she loves him

are in the FVB-set of TS-0. When we encounter the pronouns in the second
half of the sentence, we will need to know what substitutions will have them
within their scope. The SA-set for each node will contain these bindings.
Since (he0 John) and (he1 Mary) are free below TS-0, they must be
substituted in over TS-0 and so also over TS-2. Therefore, we must add
these bindings to the SA-set of TS-2. And since the SA-sets are passed down
the tree, we also add the bindings to the SA-set of TE-3. Now when we
encounter she, we scan the SA-set and find the binding (heI Mary). Since
Mary and she have the same gender, Mary may be the antecedent of she. So

364 JOYCE FRIEDMAN AND DAVID S. WARREN

the variable of that binding, her, replaces she in the tree. Similarly, when him
is encountered, (he0 John) is in the SA-set of TE-4. So he0 replaces him
indicating that John is the antecedent of him.

Relative Clauses

Applications of S3, the rule which introduces such-that relative clauses,
are handled in this same framework. The only difference is that there is no
possible scope ambiguity, given the Net-4 context-free parse. When such-
that is encountered, the common noun is paired with a new variable and
this binding is placed directly into the SA-set. It could also be placed in the
FVB-set and then immediately removed after the such-that phrase is tra-
versed. The construction of the SA-sets for lower levels from the SA-sets
and FVB-sets of the current level places this pair in the SA-set of every
subordinate node, which allows pronouns encountered during the parse of
the sentence subtree to be coreferential with the comnon noun heading the
such-that phrase.

The sentence John loves a woman such-that she loves him illustrates
the processing of a sentence with a such-that phrase. Tree 13a is its Net-4
parse and tree 13b is the PTQNET parse. When such-that is encountered
while traversing tree 13a, (heI woman) is added to the SA-set of node TS

Fig. 13a Net-4 Parse.

A PARSING METHOD FOR MONTAGUE GRAMMARS 365

I
I

I
he1 yN such-that

I

?
woman

A
l-E

h!?
‘;v

l I”,sl TE

kL? hi? 0

Fig. 13b FTQNJZT Parse.

Parsing Relative Clauses
John lows a woman such-that she loues him

so that during the traversal of this sentence subtree, this binding will be in
the SA-sets. Then when she is encountered, the SA-set is scanned and it is
found that she can be coreferential with woman.

Ambiguities of Scope and Reference

At each point in the traversal that the FVB-set or the SA-set is scanned to
determine a possible next action, the possibility of ambiguity arises. For
example there is another parse of the sentence of Figure 12. The two
occurrences of rule S14 could appear in the opposite order, with John
being substituted into the subsentence first and Mary later. This parse is
found because any pair can be chosen from the FVB-set when inserting a
substitution rule in a parse. Similarly parses which differ only in the
referents of pronouns are found because any pair with the correct gender
can be chosen from the SA-set.

366 JOYCE FRIEDMAN AND DAVID S. WARREN

Trees 14a and 14b show two parses of the sentence John or Bill loves
Mary and she loves him. These parses differ only in that when him was
encountered, in the first case the binding (he0 John) was chosen from the
SA-set whereas in the second tree at that same point (hei Bill) was chosen.
These trees clearly differ semantically. In the first Mary loves John and in
the second she loves Bill. In still another parse, not shown, Mary loves
John or Bill.

Fig. 14a Mary loves John.

Constraints on Order of Substitution

This possibility of choosing elements from the FVB-set and SA-set allows
the parser to find all parses which vary in the order of application of
substitution rules and in the referents for pronouns. However, if all orders
of substitution and all possible referents for pronouns are permitted, trees
which are not parse trees for the input sentence are obtained in addition to
all the correct parses. Consider the example, A woman such-that she loves
a man such-that he loves her walks. Allowing all orders of application of
substitution rules when parsing this sentence yields the tree of Figure 15.
This is not a correct parse of the given sentence. When the syntactic rules
are applied to generate the sentence, we get A woman such-that she loves a

A PARSING METHOD FOR MONTAGUE GRAMMARS 367

Ts

44

I I I
ko TJz Ts

Jdh” 44

I I I
k2

‘;”
l-s

Mary Sll

I
Ts

I I
and l-s

SL d4

I I
TE

I
IV

I

SL sls
T

Ijf--

k2
Y

I I I

TEorT
hL? he1

T
0 he2

Fig. 14b Mary loves Bill.

Pronoun Ambiguity
John or Bill loves Mary and she loves him

man such-that he loves him,-, walks. This still contains a free variable so the
tree is not a parse for the original sentence.

The problem arises because terms can be nested in other terms. We
eliminate the bad parses by keeping track of what terms are embedded in
what other terms. The rule is that before any variable-term pair can be
substituted over a phrase, that phrase must already contain all occurrences
of the variable. That is, no variable-term pair can be substituted while
occurrences of that variable remain in terms of other pairs in the FVB-set.

In the above false parse, the substitution of woman for he0 into /re,-, Zones
him2 violates this rule. It occurs at a CN-S3 node whose FVB-set also
contains a variable-term pair with variable he2 and term a man such-that
he loves himo. Thus, after the substitution a term still in the m-set
contains an occurrence of he,,. This pair is passed up the tree to nodes
above the CN although he,, has been bound at the CN. When the &-term
pair is finally used, him0 will enter the tree above the point where he0 is
bound. It will thus remain free.

To avoid this problem, when deciding to substitute a term into a subtree,
it is checked that no term in the current FVB-set contains an occurrence of

368 JOYCE FRIEDMAN AND DAVID S. WARREN

Fig. 15 Incorrect Parse Tree.
A woman such-that she loves a man such-that he loves her walks

the variable for which the chosen term is being substituted. If the rule is
violated, the substitution is not made, since it could only lead to bad parses.
There may of course be successful parses, but they will be arrived at in
other ways. For example, the good parses of this sentence include some
that substitute the &-term pair in over the subsentence hi loues himz.

A MODIFICATION TO PTQ

Variants of PTQ can be investigated using this system. PTQ contains
several errors in its treatment of conjoined phrases (see, for example,
Bennett (1976) or Friedman (1977)). Our ATN contains an option that
gives it a more sophisticated treatment of conjunction. On one choice the
net preserves the errors in the grammar of PTQ; on the other, it represents
a modified grammar that corrects them.

The choice of alternatives for conjoined verb phrases is implemented in
passing information about verb types into the IV subnet. For example, if
the errors are preserved, John walks and talk is accepted because the
infinite verb talk is found by the IV subnet. Otherwise the net will look for
a finite verb, so that John walks and talks will be accepted instead. The
option also applies to pronouns, so that, for example, either Bilf loves Mary

A PARSING METHOD FOR MONTAGUE GRAMMARS 369

and Mary loves John or he as in PTQ, or the corrected form Bill loves Mary
and Mary loves John or him can be represented.

COMPUTER IMPLEMENTATION

The parsing algorithm has been implemented in the LISP programming
language. It is one of a set of computer programs designed to aid in
working with and testing PTQ and its extensions. The parsing system has a
central role. It takes an English sentence and finds its derivation tree or
trees. The parser produces all the correct derivation trees (to within well-
specified equivalences) for any sentence of the PTQ fragment. The outputs
of the parsing system are directly acceptable to a translation program that
produces the meaning of the sentence in intensional logic, and applies
various reductions to the formula. These formulas in turn can be inter-
preted in a possible worlds model by other programs. These programs will
be described elsewhere.

CONCLUSIONS

Our parsing system for the English fragment of PTQ finds the derivation
trees for any sentence. From the infinite set of trees defined by PTQ it
selects a finite set that contains all trees that wuld have different semantics.

The grammar is represented as an ATN, which gives a natural treatment
of the rules of PTQ. While most of the rules are essentially context-free,
interesting problems are presented by the relative clause rule and the
quantification rules. We have created a general variable-handling frame-
work, which treats these in a natural way. The resulting system reflects the
underlying structure of the phenomena. The framework for pronouns
appears to have potential for the investigation of alternative approaches.

We are examining the possibilities for applying the parsing method to
other Montague grammars. Our corrected treatment of conjunction is an
example of a modification of PTQ. For extensions of PTQ that are extensions
by rule, as, for example, Karttunen’s (1977) treatment of questions, the
extension will involve straightforward changes to the net. Extensions by
mechanism, such as proposed by Bennett (1976) and Thomason (1976), may
require more research, including perhaps some additional ways of augment-
ing the net. We are now exploring these questions.

University of Michigan
September 1977
Revised December 1977

JOYCE FRIEDMAN

DAVID S. WARREN

370 JOYCE FRIEDMAN AND DAVID S. WARREN

APPENDIX

SYNTACI-IC RULES OF PTQ

Basic rules

Sl. BA E PA for every category A.
.9. If 5 c PCN, then Fo(~), WO, F&l E PT,

where Fo([) = every 5,
K(S) = the 5,
F&) is a 5 or an [according as the first word in 5 takes a
or an.

S3. If 5~ Pm and 4 E Pt, then F&,([, 4) E Pa, where Fs,,,(& q%) = {
such that 9’; and I$’ comes from C$ by replacing each occurrence

respectively, according as the

first Bnr in 5 is of

Rules of functional application.

S4. If a ~P~,iv and SEP rv, then F,(a, 6) E Pt, where F,(a: 6) = a8
and 8’ is the result of replacing the first verb (i.e., member of Brv,
Bw, Brv/t, or Brv,,rv) in S by its third person singular present.

S5. If S E PIV,r and p E PT, then F,(& p) E Piv, where F5(S, /3) = Sp if
/3 does not have the form be, and F,(S, he,) = 6 him,.

S6. If S E PrAvir and fl E PT, then F5(S, 6) E PIAV.
S7. If 6 E Prvlt and /3 E Pt, then F6(S, /3) E Prv, where F6(S, B) = S@.
S8. If S E Prv,/rv and p E PIV, then F& P)E PIV.

S9. If 8 E P,,, and j3 E Pt, then FJS, ##) E Pt.
SlO. If S E Prv/rv and 0 E Pw, then F#, /3) E Prv, where Fr(S, L?)

= gs.

Rules of conjunction and disjunction.

Sl 1. If 4, J, E Pt, then Fs(+, +), W& $) E Pt, where Fa(+, +) = 4 and
vt fi(4, @tr) = 4 or &

S12. If ‘y, S E Prv, then FS(y, a), F9(y, 6) E Pw.
S13. If a, p E PT, then F9(a, p) 6 PT.

A PARSING METHOD FOR MONTAGUE GRAMMARS 371

Rules of quantification.

S14. If a E P-r and (b E Pt, then Flqn (a, 4) E Pt, where either (i) a does
not have the form hek, and F&a, 4) comes from 0 by replac-
ing the first occurrence of be, or him, by a and all other

respectively,

according as the gender of the first Ba or BT in a is

or (ii) a = hek, and Flo,,(a, 4) comes from + by replacing all
occurrences of he, or him, by hek or himk respectively.

S15. If a G PT and C E PcN, then Fro,n(a, 5) E Pa.
Sl6. If a ePT and 6 E Prv, then F,,,(a, 6)~Prv.

Rules of tense and sign.

S17. If a E PT and6 E Prv, then Fll(a, a), F&Y, S), Fi3(a, S), Fla(a, S),
Ft5(a, S) E P,, where:
Fll(a, S) = as’ and 6’ is the result of replacing the first verb in 6
by its negative third person singular present;
Flz(a, 6) = as” and 8’ is the result of replacing the first verb in S
by its third person singular future;
F13(a, S) = a#” and 6”’ is the result of replacing the first verb in S
by its negative third person singular future;
F&a, S) = as”” and 8”’ is the result of replacing the first verb in
S by its third person singular present perfect; and finally,
F&a, S) = as”“’ and 8”“’ is the result of replacing the first verb in
6 by its negative third person singular present perfect.

REFERENCES

Bennett, Michael ‘A variation and-extension of a Montague fragment of English’ in Partee,
1976,119-163.

Friedman, Joyce ‘An unlabeled bracketing solution to the problem of conjoined phrases in
Montague’s FTQ’ Department of Computer and Communication Sciences, The University
of Michigan, Ann Arbor, Micli., 1977; to appear in Journal ofPhilosophic Lqic.

Hintikka, J., Moravcsik, J., and Suppes, P. (eds.), Approaches to Natural Language, Reidei,
Dordrecht, 1973.

Karttunen, Lauri ‘Syntax and semantics of questions’ Z..ingz&ics and Philosophy 1 (1977),
3-44.

372 JOYCE FRIEDMAN AND DAVID S. WARREN

LaGaly, M., FOX, R., and Bruck, A. (eds.), Papers from the Tenth Regional Meeting of the
Chicago Z.inguistic Society, University of Chicago, Chicago, 1974.

Montague, Richard ‘The proper treatment of quantification in ordinary English’ (PTQ), in
Hintikka et ab, 1973,221-242; reprinted in Montague, 1974,247-270.

Montague, Richard Formal Philosophy: Selected Papers of Richard Montague, edited and with
an introduction by Richmond Thomason, Yale University Press, New Haven, 1974.

Partee, Barbara ‘Montague grammar and transformational grammar’ Grguistic Znquiry VI
(1975), 203-300.

Partee, Barbara (ed.), Monfague Grammar, Academic Press, New York, 1976.
Thomason, Richmond H. ‘Some complement constructions in Montague grammar’ in LaGafy

et aI., 1974,712-722.
Thbmason, Richmond H. ‘Some extensions of Montague grammar’ in Partee, 1976,77-l 17.
Thorne, J. P., Bratley, P., and Dewar, H. ‘The syntactic analysis of English by machine’ in D.

Michie (ed.); Machine Intelrigence 3, American Elsevier, New York, 1968.
Woods, William A. ‘Transition network grammars for natural language analysis’ &mm,

ACM 13 (1970), 591-606.

