
ARTI~ CIAL IlgTELLIGENCE 287

Making Computational Sense of Montague's
Intensional Logic

Jerry R. Hobbs
Department o f Computer Sciences, City College, C U N Y

Stahley J. Rosenschein 2
Courant Institute o f Mathemat ical Sciences, N e w York University

Re,:ommended by D. E. Walker

ABSTRACT
Montague's dlfficuit notation and complex model theory have tended to obscure potential insights for
tlu computer scientist s:udying Natural Language. Despite his strict insistence on an abstract model-
ttu'oretic interpretation for his formalism, we feel that Montague's work can be related to procedural
semantics in a fairly direct way. A simplified version of Montague's formalism is presented, and its
key concepts are explicated in terms of computational analogues. Several examples are presented
wathin Mont~rgue's formalism but with a view toward developing a procedural interpretation. We
provide a natural translation from intensional logic into usP. This allows one to express the com-
l~Tsitton of meaning in much the way Montague does, using subtle patterns of functional application
to distribute the meanings of individual words throughout a sentence. The paper discusses some of the
insights this research has yielded on knowledge representation and suggests some new ways of looking
at intensiona/ity, context, and expectation.

1. Introduction
With the goal of bridging the gap between linguistics and logic, the logician
Richard Montague developed an apparatus for describing the syntax and semantics
of English. Using a categorial grammar and the language of intensional logic, he
gave a mathematically precise account of a small but semantically interesting
fragment of English. A worker in natural language processing is likely to find his
first encounter with Montague's work a rather unsatisfactory experience. He finds
that English sentences are supposed to acquire meaning by being mapped into a
universe of possible worlds, of infinite sets and functionals of functions on these
sets. He tinds, for example, the word "be" defined as a functional mapping a

Jerry R. Hobbs, presently at SRI International, Menlo Park, California.
2 Stanley J. Rosenschein, presently at Technion--Israel Institute of Technology, Technion City,

Haifa, Isra~:l.
Artificial Intelligence 9 (1978), 287-306

Copyright © 1978 by Nort h-Holland Publishing Company

288 .I.R. HOBBS AND S. J. ROSENSCHEIN

function from possible worlds and points in time into entities and a fih'ction from
possible worlds and points in time into functionals from functions from possible
worlds and points in time into functionals from functions from possible worlds
and points in time into entities into truth values into truth values into truth values)
It is difficult for him to see how such a representation can help with any of the
problems he faces, either linguistic problems, such as devising representations for
context and expectation and algorithms for finding antecedents of pronouns and
resolving ambiguities, or task problems, such as question-answering and converting
natural language input into the directed behavior of some device. In short, he
questions its relevance to someone whose work and theory must be grounded in
the need to produce working computer programs.

In this paper, we suggest that despite Montague's dill.cult notation and the
complex model-theoretic interpretation for his formalism, there are many potential
insights in Montague for the computational linguist. This is not to imply that
natural language processing systems should be based on Montague's formalism.
For one thing, Montague is primarily concerned with the assignment of truth
values to simple declarative sentences, which is only one of the many activities
language users ordinarily perform. Nevertheless, Montague's method, involving
subtle patterns of functional application, suggests an interesting way of distributing
meanings of individual words throughout a sentence. We show how this method
can be used computationally by relating Montague's work to procedural semantics
in a fairly direct way. In addition, we indicate how the method might be extended
to handle certain aspects of context.

Much work has been done on Montague grammar and on relating intensional
logic to the semantics of English. We will not review this literature here. Rather,
we will take Montague [9] as the key paper and representative of the zpproach. In
this paper he treats a subset of English which includes simple quantification and
some intensional verbs. Many linguists are currently working on extending this
subset. Additional material can be found in [I0], [12].

Montague's method for assigning meanings to English sentences involves three
distinct phases. An English string is assigned a syntactic analysis with respect to a
categorial grammar. This is translated into an expression in the language of
intensional logic. ~'inally, this expre.qsion undergoes modebtheoretic interpretation.

Montague's language of intensional logic is a typed lambda calculus. In this
language he constructs a generally complex formula representing a pattern of
composition and application of functions, ultimately derived from the basic terms
of the language, such terms as man, seek, run, etc. The meanings of surface words
are taken to be very abstract functions, which take as arguments other such
functions. Things "work out", so that the function assigned as the meaning of a
declarative sentence evaluates at a possible world and point in time to true or false.
Part of the attraction of Montague's treatment lies in the way he manages to mesh

3 This sentenc~ parses unambiguously.

MAKING C@MPUTATIONAL SENSE OF MON/AGUE'S INTENSIONAL LOGIC 289

a complex system of meaning assignments in a mathematically precise way so that
the meanings do work out, with the exact details illuminating some classic problems
of semantics, including intensional predicates and referential and nonreferentlal
terms.

The goal of any semantic theory is to express English strings in terms of an
antecedently understood metalanguage [12]. The metalanguage of set theory has
been a favorite choice this century. Meanings for Montague are ultimately abstract
set-theoretic con,~tructs, in the tradition of Tarskian model-theoretic semantics [14].
But while these constructs m~,y be antecedently understood by humans, they
certainly are not antecedently understood by computers, and Mo~tague makes no
claim for their being computable in any sense.

To make sense to the computational linguist, something must be reduced to
implementable procedures. The meaning of an expression is then the behavior of
the procedure it is transformed into. Thus, while he often uses formalisms that
look very much like those of the logician, the computational linguist is after a quite
different type of semantic theory, one which is ultimately machine-theoretic rather
than model-theoretic in its orientation (see also Davies and Isard [1], Isard [4] and
Joshi and Weischedel [6]).

What guidelines, then, can Montague, the model-theorist, give the computa-
tional linguist in the task of working out the details of a procedural semantics for
natural language? While it is true that Montague's semantic constructs generally
involve infinite sets and functions on them, failing computability on most counts,
Montague has made a significant contribution to the computational semanticist by
showing possible formats for the representation of meanings of individual words and
mechanisms for the combination of meanings which are considerably more elegant
than most computational alternatives now in use. By replacing the bottom layer of
Montague's model-theoretic edifice with an appropriate set of procedures~ we hope to
preserve computability while still maintaining the basic framework of Montague
grammar. We hope to convey those aspects of Montague grammar which should be
of interest to the artificial intelligence researcher working on knowledge representa-
tion, and to the computational linguist in particular.

In Section 2 we give an outline of the main features of Montague's formalism.
In addition we suggest ways in which a computer scientist might think of its key
concepts. Section 3 gives several Montague-style examples together with simple
procedural, or machine-theoretic, interpretations. Section 4 describes the very
little that needs to be done to Montague's expressions in intensional logic in order
that they be directly interpretable as expressions in an existing programming
language, LISP, augmented by a small suitable set of primitive functions. This
result then demonstrates that the rather extensive research in Montague grammar
is quite compatible with research in procedural semantics (e.g. [16], [l 5]). Further-
more, Montague's very fruitful approach to the problem of structuring functior~al--
and by extension, proceduralwknowledge indicates how the method of procedural

290 J. R. HOBBS AND S. J. ROSENSCHEIN

semantics can be sharpened in just that respect which has caused it most to come
under attack: the ad hoe character of its definitions. In Section 5 we speculate on
what light this approach may throw onto the nature of context and expectation.

2. Montague's Formalism

This exposition will follow that of Monta.gue [9] and use the more standard features
of his notation, but will give only those rules necessary for the examples in th~s
paper. A few rules are added to handle one example.

The categorial grammar used for syntactic analysis of English strings consists of
categories into v,~.'.-'h English words and phrases may fall and rules for combining
words and phrases of various categories into larger phrases and sentences. The
categories, with examples of words (or basic expressions) that belong to them, ate
as follows:

Truth values: t
Entities: e
Intransitive verbs: IV:
Terms: T:
Transitive verbs: TV:
Common noun phrases: CN:
Adverbials: IAV:
Attributive adjectives: Adj:

(no basic expressions)
(no basic expressions)
rise, trot
ninety, heo
seek
man, frog, horse, temperature
rapidly
s low. 4

Phrases of the various categories may be built up out of basic expressions by the
following rules (morphological fineries are ignored):

(1) (Article+Common Noun Phrase). If (is in category CN, then Fo(~), Ft(~),
F2(() are in category T, where Fo(£) = every ~, Fl(~) = the ~, F2(O = a ~.

t

(2) (Subject+Verb Phrase). If ~ is in category T and 6 is in category IV, then
¥4(0~, 6) is in category t, where F4(~, 6) = ~6.

(3) (Transitive Verb + Object). If 6 is of category TV and fl of category T, then
Fs(6, fl) is of category IV, where F5(6, fl) = 6ft.

(4) (Verb Phrase+Adverbial). If 6 is of category IAV and fl of category IV,
then F7(,5, p) is of category IV, where F7(6, f l)= fl& (Note: this is the only
syntactic rule which reverses the order of the elements.)

(5) (Attributive Adjective + Common Noun). If 6 is of category Adj and fl of
category CN, then F-~(6, fl) is of category CN, where F.~(6, fl) = 6,8. 5

4 This category is not in Montague [9].
5 This rule is not in Montague [9].

MAKING COMPUTATIONAL SENSE OF MONTAGUE'S INTENSIONAL LOGIC 2~ 1

(6) (Conjunction). If~b, ~b are of category t, then so is Fs(~b, ~) where Fs(~b, ~/) =
antiC/.

(7) (Quantification). If ~ is of category T and not hen; and ~b is of category t or
IV and contains hen, then Flo. n(~,~) is of the same category as ~p, where
Flo, n(g, 4) = ~', where ~' is like ~ except that the first occurrence of he,, has been
replaced by a.

Rules (1}-(3), (5) and (6) are just phrase structure rules, while rules (4) and (7)
can be implemented by simple transformations.

This completes our discussion of the syntactic rules. We now present the language
of intensional logic.

The basic types of Montague's intensional logic are as follows:

t = truth values;
e = e n t i t i e s ;

s = pc.ssible world-point in time pairs.

A possible world-point in time pair will be called a point of reference.
Higher types are built up as follows: if a and b are types, then (a, b) is the type

consisting of all functions from a to b. Expressions in intensional logic may be
built up from constants and variables of each type and from other expressions by
means of logical connectives, quantification, temporal and modal operators,
functional application, and lambda abstraction. For example, if u is a variable and

and/J are expressions of the appropriate type, then

v #, fcu) , [] ,lug,
are also expressions. In addition, if 0c is an expression of type a, then " a (called the
intension of 0 0 is an expression of type (s, a). If ~ is an expression of type (s, a)
then " ~ (called the extension of a) is an expression of type a. The extension operator
" applies a function whose domain is points of reference to the current point of
reference. The intension operator " applied to an expression creates a function
whose domain is points of reference and whose value at each point of reference is
the expression. (To reduce parenthesizing, we assume " and " apply to the smallest
meaningful expression to their immediate right.)

The types do not occur arbitrarily in the analysis of English. Certain types turn
out to be the most useful, and for these key types it is worthwhile developing our
intuitions by describing computational analogues. For this purpose, let us assume
that a point of reference corresponds to a possible state of the machine at a
particular moment in time. Then the extension of an expression ~, "~, may be
viewed as the evaluation of that expression with respect to the current state of the
machine. The intension of a, "0q on the other hand, represents an object which
when evaluated with respect to any state of the machine will return the value of
in the current state. In Section 4 these notions will be refined, and some necessary
elaboration will be presented.

The type • may be viewed as the set of constants of the "data type" available in a

292 .I.R. HOBBS AND S. J. ROSENSCHEIN

computer program, e.g. numbers. Type (s, e) is the set of functions from points of
reference to entities. When evaluated, they give an object of type e, a constant.
Thus, as a first approximation, we may view an object of type (s, e) as a simple
variable. It associates a constant with any current state of the machine. In par-
ticular, the parameter of a procedure which evaluates to a constant is of type
<:s, e). This initial intuition is useful, but it will have to be modified somewhat in
Section 4 below. In addition the first example of Section 3 views objects of type
<s, e) in a slightly different light.

An object of type ((s , e), t) maps a variable into a truth value and thus may be
thought of as a call-by-name procedure of one argument which returns a truth
value. (This will hereafter be called simply " a procedure ".) An object of type
(s, ((s, e), t)) , for any current state of the machine evaluates to a procedure, and
thus may be thought of as a procedure name. Such a name may be attached to the
same procedure throughout the operation of a program, or it may change. An
object of type ((s , ((s , e), t)) , t) maps procedure names into truth values and may
be thought of as a call-by-name functional. Objects of type (s, ((s, ((s , e), t)) , t))
are variables ranging over functionals, hence functional names.

Predicate modifiers like the English word "rapidly" are realized as higher
functionals of type <(s, ((s, e), t)) , ((s, e), t)) , which map procedure names (e.g.
the procedural interpretation of "walks") into procedures (e.g. the procedure for
"walks rapidly"). Transitive verbs such as "seek" and "be" are realized as objects
of type ((s, ((s, ((s , e), t)) , t)) , ((s , e), t)) . This is a higher functional taking
two arguments--the first a functional name representing the direct object of the
verb, the second a simple variable representing the subject of the verb.

In what follows, x, y, z will be used as variables ranging over objects of type
(s, e), simple variables; P, Q, R over objects of type (s, <(s, e>, t)) , procedure
names; and ~ over functional names of type (s, ((s , ((s, e), t)) , t)) .

The rules for translation from syntactic representations to expressions in
intensional logic are as follows:

(1) The English words "man", "frog", "horse", "temperature", "rise", and
"trot" are mapped into MAN, FROG, HORSE, TEMPERATURE, rosE, and TROT, re-
spectively, where these are objects of type ((s, e), t) . For Montagt;e they are
functions, i .e. sets of ordered pairs; we may view them as the procedures in a
computer program which recognize or define the properties of "man", "frog",
etc. "Slow" and "rapidly" map into SLOW and RAPID, respectively, which are of
type ((s, <(s, e), t)) , ((.s, e), t)) . "Seek" maps into SEEK, of type

((s, (<¢, (<s, e>, t>), t)) , <<s, e), t)) .
(2) "B¢" maps into the expression 3.#'~x["#(",ly["x = "y])].

(3) "Ninety" is mapl~M into ,~P["P("n)] where n is an entity Of type e.

(4) "hez" is mapped into ~P["P(xi)] where xi is the ith variable of type (s, e).
In the remaining rules, g' signifies the translation of • under the rules.

MAKING COMPUTATIONAL SENSE OF MONI'AGUE'S INTENSIONAL LOGIC 293

(5) Every ~: Fo(~) is mapped into 2P[(Vx) (~'(x) ~ "P(x))],
the .(: Ft(~) is mapped into 2P[(3y) ((Vx) (£'(x) .-, x = y) & "P(y))],
a ~: F2(¢) is mapped into

(¢'(x) &

(6) F4(6, ~) is mapped into 6'("~'),
Fs(6, p) is mapped into 6'(^/~'),
F7(6,/~) is mapped into 6'("/~'),
F.~(6,//) !is mapped into 6'("/~').

(7) Fs(~,/~) is mapped into ~t' &/~'.

(8) Ft o. ,(~t, ~) is mapped into ~'("2x,$') if 0t is of category T and q~ of category t.

F~o. ,(ct, 6) is mapped into 2y[cz'("2x,[6'(y)])] if ~t i s 'of category T and 6 of
category IV.

Thus, most concatenations of words in English are translated into functional
applications in intensional logic.

Montague presents a standard model-theoretic interpretation for the expressions
of intensional logic. We will not outline the details, for our interpretations will be
quite different. Objects in intensional logic will be interpreted as constants,
procedures, and functionals in a computer program.

3. Examples
3.1. Consider the sentence

The temperature is ninety and the temperature rises. (1)

This sentence has been of interest [9] because if "be" is viewed as equality and
therefore as a symmetric and transitive relation,

Ninety rises
follows. The syntactic representation is

Fs(F4(Fl(temperature), Fs(be, ninety)), F4(Fl(temperature), rise)). (2)

The translation rules map this into the expression

2P[(3yl) ((Vxl) (TEMPEltATURE(Xl) ~ Xt = y,) & "P(Yl))]
(^ a ~ 2 x 2 [" ~ (" 2 y 2 [" x 2 = vy2])] (^2Q[" Q("n)]))
&;AR[(~]Y3) ((VX3) (TEMPERATURE(X3) ~ 363 -" Y3) • "R(Y3))] ("RISE). (3)

This expression can be simplified by symbolically applying functions to their
arguments in the order indicated by (2) and using the equivalence " " ~ ---- ~. In the
first conjunct, replacing ~ by its value yields

((Vx,) (rmre ru (x,) x, = y,) & vt'(y0)]
("2x212Q[" Q(^n)] ("2y2t"xz = "yz])])-

294 J. It. HOBBS AND S. J. ROSENSCHEIN

Replacing Q by its value gives

J-P[(=]Yl) ((~Xl) (TEMPERATURE(Xl) ~ St = Yt) ~/; Ve(Yl))]
(^xx2[~y2[Vx2 = v y d (^n)]).

Replacing Ya by its value yields

~P[(3y,) ((Vx,) (~ A ~ (x ,) ,-, x, = Yl) & VPCvD)]
(^2x2["x~ = nl).

Replacing P by its value yields

0 y d ((vXl) (T r ~ ~ E (x l) ~ x~ = Yl) & Z ~ [" x : ffi n] 0',)) .

Replacing x2 by its value results in

(=lYl) (~Xl) (TEMPERATURE(XI) ~ XI "- 71) &: Wyl ._ /I). (4)

(5) results from function application in the second conjunct:

(~y~) (6 %) (T~MPERATUP.E(XD ~ X~ = Y3) & PaSE(y~)). (5~

The conjunction of (4) and (5) reduces (because of the uniqueness of y) to

(:]y) ((~X) (TEMPERATURE(X) ~ X -- y) & " y "- n ¢~ VJ~E(y)). (6)

For our interpretation of (6) we will imagine a system in which the temperature
is measured and recorded on a graph whose horizontal axis is time. The set o f
possible worlds is the set of all possible graphs. Here it is most convenient to think
of y not as a one-argument function from points of referer, ce to numbers but as a
two-argument function from possible worlds and points in time into numbers.
Particularized to one possible world, it is then a function from points in time into,
numbers. The part of (6),

(3y) ((VX) (TEMPERATURE(X) ~-~ X ---- y) ' " "),

simply accesses the unique temperature checking function. The expression

y - - n

evaluates the function at the current time and returns TgUE if and only if the value.
,.i s 90. The predicate RiSE computes the left derivative of the function y at the current
t ime; it returns TRUe if that value is positive, FALSE otherwise.

In a sense, this example rhns counter to the intuition developed in the previous
section about the nature of objects of type (s, e), such as y, as simple variables, for
here it is used as a function from times into numbers. However, a simple variable
itself may be viewed as a function from points in time into the set of values it takes
on at those given times. The difference is that in a computer program, one is not
able to access previous values of a variable once the value has been changed, as we
would have to access previous values of y in this example to compute its left
derivative.

MAKING COMPU~['ATIONAL SENSE OF MONTAGUE'S INTENSIONAL LOGIC 295

3.2. Consider t,~e sentence

Every man seeks a frog.
By usual accounts it is three-ways ambiguous--there are the intensional reading in
which every man is seeking something which satisfies his own image of "frog"
(reading I), and the two extensional readings in which each man is seeking his own
particular real frog (reading 2) and all men are looking for the same real frog
(reading 3).

Montague gives the following syntactic representations:

¥~,(Fo(man), Fs(seek, F2(frog))) (reading 1) (7)

~,(Fo(man), Flo, o(F2(frog), Fs(seek, heo))) (reading 2) (8)

Flo. o(F2(frog), F4(Fo(man), Fs(seek, heo))) (reading 3) (9)

(7) translates into

~.P[(Vxt) (MAN(Xt) = "P(xt))] (^SEEK(^AQ[(3yt) (FROG(y1) & " Q(Yl))]))

which simplities to

0/x:[) (MAN(Xx) = SE£K("AQ[(=lyx) (FROG(y1) & " Q(y~))]) (xl)). (10)

Thus the existence of the frog Yt is within the scope of SEEK. The function
AQ[(3yt) (FROG(y~) & " Q(yl))] will be applied to its argument within the function
S~K. yl stands for the object and t2 will ultimately be replaced by the function
which expresses the core of the meaning of "seek", in the same way as in the
previous example containing the transitive verb "be", Q was replaced by
~'Y2[VZ2 "- "'Y2]"

(8) translates into

AP[(Vxt) (MAN(X1) = "P(x l))] (^Ax2[,~Q[(3yl) (FROG(yl) & " QO',))]
(' o[SEEK(^,IR[(X2)])]),

which reduces to

(Vxl) (MAs(xl) =0y,) (FROO(y,)
& AXo[SEeK("~,R["R(xo)]) (xl)] (Y,))). (1 l)

(9) translates into

2Q[(qyx) (FROG(y1) & " Q(yt))] (^AXo[AP[(VXl) (MAN(X1) = "P(x,))]
VR(xo)]))])

which simplifies to

(=JYl) (FROG(y1) & (Vxl) (MA~(Xl) = Sr.EK("RR["R(yz)]) (Xl))). (12)

In Montague's treatment, sentences like "John is a man" are also syntactically
three-ways ambiguous, the three readings paralleling (7), (8), and (9). This is
because in the syntactic analysis, common nouns (category CN), verb phrases (IV),
and sentences (t) can all be quantified into. But semantically they all collapse to the

296 J.R. HOBBS AND S. J. ROSENSCHEIN

same expression in intensionai logic. "Be" is defined in such a way as to allow the
existential quantifier to pass beyond its scope. Also "John" introduces no universal
quantifier to block the existentiars passage to the outside. The sentence "Every
man is a king" has two readings in the semantics of Montague grammar--one in
which every man is a different king and one in which every man is the same king.

No difference shows up in Montague's exposition between intensional verbs like
"seek" and nonintensional verbs like "see". It is the responsibility of the one who
defines these verbs to construct them in such a way that "see" allows the existential
to pass out of its scope and "seek" does not. Montague has given no guidance in
the latter task. We will offer a suggestion as to how this might be done.

The verb "seek" could be lexically decomposed into the conjunction of two
components: a mental component which states among other things that if A seeks
a frog then A wants to have a frog; and an operational component which states
that if ,4 seeks a frog then if ,4 is near a frog, he takes the frog. 6 We will confine
ourselves to the operational component and show that it can be used to exhibit the
distinction between the three readings of the verb "seek" by transforming it into
scope distinctions of logical operators like the conditional and negation.

This definition of "seek" can be captured within Montague's framework by
adding to the translation rules, paralleling rule 2 which defines "be", the rule

(2') "seek" maps into the expression

~,~).X2[~., v~(,,~fl2[NEAR(X2, Y2) & "~ TAKE(X2, f12)])]. (13)

The expression for the object of "seek", which in the intensional reading contains
an existential quantifier, replaces ~ . The negation will then be outside and the
propositions NEAR(X2, Y2) and ~,TAKE(X2, Y2) within the scope of the existential
quantifier. The negation sign to the left o f~ ' in (13) prevents the passage of the
existential quantifier to the left. It is one of the beauties of Montague's approach
that the meaning of a word can be distributed in this fashion. (10) becomes

(VXl) (MAN(Xl) :::) ~[~X2['~v~#(̂ '~Y2[NEAR(X2, 72) &~"TAKE(X2, 72)])]]
(^,;tQ[(3y~) (FROG(y,) a " Q(y~))]) (x~))

or

(VXI) (MAN(X1) 23 (Vyl)(FROG(yl) = (NEAR(XI , Yl) 23 TAKE(XI, Yl)))). (14)

Applying (13) to (I1) yields

C~txl) (MAN(XI) =3 (:]y,) (FROG(y1) ~ (NEAR(XI, Yl) ::> TAKE(XI, Yl)))).

Applying (13) to (12) yields

(3)'1) (FROG(yl) ~ (~XI) (MAN(X1) 23 (NEAR(XI, Yl) 23 TAKE(X1, Yl)))).

The three readings-are then distinguished by three different quantifier structures.

6 Do~y [2] has proposed similar lexical decompositions and in fact Montague has used a
lexical decomposition of sorts by including a meaning postulate reducing "be" to an expression
involving equality.

MAKING COMFUTATIONAL SENSE OF MONTAGUE'S INTENSIONAL LOGIC 297

For our model we can now imagine a data base which contains a number of
entities and ~ number of properties associated with these entities. In particular, it
records the :~pecies of each entity and for each relevant moment in time, the
locations of the entities and the facts about possession of one entity by another.
Typical item~; in the data base might be

(MAN Xl)
(rgo~ x2)
(AT Xl (5¢ 40) 1846)
(AT Y1 (55 39) 1846)
(nAVE X1 Y 1 1847).

A possible world for this example is a possible set of such entities and properties.
The most naive interpretation of the existential quantifier is a procedure which
searches through the entities until it finds one with the required properties, ghe
corresponding interpretation of the universal quantifier is a procedure which
searches through all the entities to verify that all have the required properties.
NEAR is defined in terms of distance. TAKE checks for a change from nonpossession
to possession.

Although definition (13) distinguishes between the several readings, it has the
disadvantage that in our model we cannot determine the truth or falsity of "Every
man seeks ;a frog" except after the fact, and then (unreliably) only if the seeking
was successful. For example, if several men took distinct frogs after being near
others, it must be reading 2, in which each man is looking for his own particular
real frog. However, if only one man came near a frog and he took it, any of the
three readings may apply. In addition, each man may have his own, possibly
erroneous, image of a frog, and if there were no such thing as frogs, the expression
(14) would always be vacuously true. We cannot hope to resolve these difficulties
in general 'without modeling mental states.

Definition (13) could profit from the nicety of a time condition stating that the
nearness was true just before the taking occurred. But these changes would greatly
complicate the exposition at the expense of clarity.

3.3. Let us now consider the sentence

"A slow horse trots rapidly,"

with the syntactic structure

F4(Fl(F~(slow, horse)), F~(rapidly, trot)).

This trans;lates into

2P[(3x) (SLOW(" HORSE) (X) & "e(x))] (" RAPID(" TROT)),

which simplifies to
(:IX) (SLOW(" HORSE) (X) & RAPID(-TROT) (A')).

298 J . R . HOBBS AND S. J. ROSENSCHEIN

In a procedural interpretation, SLOW and RAPID must be defined as higher
functionals which in a sense modify the definitions of the functions HORSE and
TROT. There are several ways one can imagine this happening. The method we
present, while unorthodox for pure lambda calculus in that it involves capturing
free variables, is commonplace in programming languages, such as LISP, which are
based on lambda calculus. In effect, this section anticipates the treatment given to
such variables in LISP examples to be presented below.

Suppose we are given an entity called a "scale" which, for simplicity, we can
think of as an ordered pair Oo-point, hi-point). Assume in addition that we are
given two function names, LO and HI, which are initially bound to the functions
which map a scale into its lo-point and hi-point respectively. We may then visualize
the outlines of a HORSE function as

HORSE = 2x[2(- • • gailopspeed • • .)
[. . . (speed(x) > Lo(gallopspeed))

& (speed(x) < m(gallopspeed))
• . .] (- . - < 20, 35 > ---)] .

Gallopspeed may be taken to be the default speed scale for noRSE. A lambda
application within the definition of HORSP binds gallopspeed to a particular scale
to which the functions LO and HI are applied. The verb TROT is handled similarly:

TROT = 2xD,(" • • speedscale.- .)
[. . - (speed(x) > Lo(speedscale))

& (speed(x) < rlffspeedscale))
• .-] (. . . < 14, 26 > . . -)] .

Now we can examine the roles of SLOW and RAPID as mappings from intensions
of objects like HORSE and TROT to objects representing a slow horse and a rapid
trotting respectively. SLOW can be defined as follows:

SLOW -- 2 P [2 m[2 x ["P(x)]]
(2 scale [LO(scale) + (aI(Scale)-LO(scale))/3])].

Similarly:

'RAPID = A P [2 LO[A x ["P(x)]]
(2 scale [HI(scale)-- (HI(scale)-LO(scale))/3])].

That is, SLOW redefines m to return a lower upper limit on a speed scale, and gAPm
redefines LO to return a higher lower limit. Now the meaning of "The slow horse
trots rapidly" can be seen to reduce to

(3x) [- . . (speedl(x) > 20) & (speedl(x) < 25)
• -" (speed2(x) > 22) & (speed2(x) < 2 6) . . -]. (15)

The subscripted function names, speed1 and speed2, had their origin within the
scope of HORSE and TROT respectively and hence may refer to the same or different
speed functions. It is seen from the final reduction that although SLOW t a d RAPID

MAKING COMPUTATIONAL SENSE OF MONTAGUE'S IN-TENSIONAL LOGIC 299

have opposite effects, the local nature of the scopes of HI and LO allow the correct
meaning composition to be obtained.

4. Correspondences with LISP
4.1.

The fact that Montague chose a lambda calculus for the language of his intensional
logic immediately suggests the programming language LISP as the computational
analogue. In this section we show how Montague's intensional logic expressions
can be translated almost directly into LISP expressions which can be evaluated, or
executed, in some environment to yield a result. Our analogue of intension will be
the procedures. Points of reference will be incorporated within tbe environment in
which the procedures are executed, and the results will correspond to extensions.
Some difficulties naturally arise in precisely those places where an infinite computa-
tion seems to be implied by Montague's formalism, as in the interpretation of the
universal quantifier over all possi:.'.e worlds, a clearly infinite set in most models.
Our approach h,as been to replace infinite constructions, usually "sets", by finite
ones, such as "procedures", without destroying the overall framework of functional
composition and application as the basic method for building up the meaning of a
sentence.

Before proceeding, we would like to stress the distinction between intension and
description. "Description" refers to a linguistic object, while "intension" refers to
a function. Different descriptions may have the same intension. Likewise we dis-
tinguish between a LiSP function, which is only applied, and its various symbolic
representations as s-expressions. There has been confusion on this point in the
natural language processing literature.

In the next fi:w paragraphs we present a brief discussion of the relevant features
of use. Those who desire a fuller treatment may consult McCarthy et al. [7].

Following McCrrthy et al. [7] we view tl-e LISP interpreter as consisting of two
mutually reeursive meta-functions: apply and eval. The function apply If; x; a]
returns the result of applying function f to arguments x in environment a; eval
[e; a] evaluates expression e in environment a. The notion of an environment was
originally realized concretely as the a-list, which pairs vc, riables with their valves.
The substitution semantics of the lamLda calculus are captured in LISP not by
direct substitution into evaluated expressions but rather by the creation of a new
environment which differs from that specifieti by a in precisely those bindings
which define the substitution.

This method of "deferred" substitution gives rise to anomalies in the case of
functional argume':ts containing free variables, if the same variables are rebound
within the function calling the functional argument, the initial binding of the free
variable may be overridden. These anomali-~s are corrected by allowing for closures,
i.e. functions with frozen environments, to be created by eval and applied by apply.

22

300 J . R . HOBBS AND S. J. ROSENSCHEIN

This is done classically through the use of the operator FUNCTION which creates a
closure or r tmagG [7], [1I]. Furthermore, it is convenient to assume that the
interpreter is such that eval [(t~MnDA-" "); a] is equivalent to eval [(~'NcrION
(LAMnDA • • ")); a]; that is, a LAMnDA expression evaluates to its closure (see also [13]).

The simplest way to exhibit Montague's formalism in LISP is to identify a point
of reference with a binding environment, or a-list, with respect to which an ex-
pression is evaluated. Then we let eval[e; a] correspond to the model-theoretic
interpretation o f an expression e with respect to a point of reference. In this view,
the expression " ~ corresponds to (LIST (QUOTE QUOTE) g). It gives an object to which
can be applied the operator " (corresponding to EWL, the object language invoca-
tion of the recta-function eval) which in turn yields an object of the same type as g.

The first few translation rules are:

(1) a, a constant

(2) ~, a variable of type (s, b) for any b

(3) ^a

(4) Va

 (ouo E a),
-,(Quo a),
-*(usT(Quo QUOXE)a),
-,(EVAL

In rule (2) the variable must be quoted if the calling function is to be given the
option of evaluating or not evaluating the variable. As a first approximation it is
useful to look at intension and extension as "QUOTE the value" and "EVAL",
respectively, to make firm some of our intuitions about these concepts, which
behave formally in much the same way. For example, the identity

Interpretation-of[" ^a] = Interpretation-of[a]

is preserved in the translation:

evaI[(EVAL(LlST(QUOTE QUOTE)a)); a] = eval[o~; a]
for all a and for all a. 7

As appealing as this analogy is, however, it is desirable to treat intension and
extension in another way, relating reference points to environment indirectly. We
may assume there is a variable named * to the value of which intensions are applied
to produce the corresponding extensions. We need place no restrictions on what *
can be bound to. For example it could be an arbitrarily complex object corre-
sponding to a model of a possible world, implemented as a data base, a list of
functions, or any other suitable structure. For brevity we will call the data type of
• "s-list", after the " s " in Montague's hierarchy of types.

Now rules (i)-(4) are replaced by rules (la)-(4a):

(ia) a, a constant ~ (QUOTE a),

(2a) ~, a variable ~ ~,

There is a certain clumsiness in rules (1)-(3). This results from the need for E v ~ to serve a
double role: modeling the extension operator and implementing the substitution semantics of
LISP.

MAKING COMPLr];ATIONAL SENSE OF MONTAGUE'S INTENSIONAL LOGIC 301

(33.) ^0~ ="} (INT* ~g), where
INT* -" (LAMBDA(G)

(LAMBDA(*) G)),
(4a) v -+ (~ ,).

Note that here too " ^g has the same interpretation as u, i.e.

eval[((iNT* ~) *); a] = eval[(((LAMBDA(G) (LAMBDA(*) 6;)) ~) *); a]
= eval[~; a].

The remaining: translation rules are the same for either approach:

(5) ~u~ ~ (LA~DA(U)~),
(6) a(B) ~ (ce 1~),
(7) g -~=]~ =-} (EQUALF 0~ fl),
(8) ~ 4 ~ (NOT 4),
(9) ~ ~.~ ~/ --} (AND ~ ~),

(10) ~ v ~ -- (oR ~ ~),
(1 l) # = ~ - , 0MPLmS # #),
(12) # ~ # , - , 0 V V ~) ,
03) tu~ ~ (FORSOME (range of u) (LAMBDA(U) ~)),
(14) Vu~ --} (FORALL (range of u) (LAMBDA(U) 4)),
(15) rig, -~ (NEe(QUOTE ~)),
(16) W~ ~ (FurURE(QUOTE~b)),
(17) H ~ "~ (PAST(QUOTE~)).

The functions Nor, AND, OR, 1MPLmS, and IFF are self-explanatory.
In rules (13) and (14), a naive extensional reduction of FORSOME and FORALL

would be a procedure in which the expression used for the range of u would act~:ally
evaluate to a finite list. The predicate which is the second argument would be
applied to the members of the list. In the more sophisticated definition of FORALL
and rORSOM!E required for infinite sets, the range and predicate arguments would be
"models" or "descriptors". FORALL, for example, would then seek to prove that
if an element is in the range, the predicate is true for that element.

In rule (7) we could have used the LISP function EQUAL which tests for equality of
symbolic expressions. This would have captured equality of entities and truth
values. It would not work for higher types, however, since a single function can be
expressed by many distinct symbolic expressions. For this reason w e have postulated
the operator VQUALF, which would seek to prove the equality of higher-type argu-
ments, or descriptors of such arguments.

In rules (15)-(17), the reason that the proposition q~ is quoted is that Montague's
formal stalement of the interpretation of the modal and tense operators does not
call for the application of a function to an evaluated proposition, but rather it
directs a different evaluation to take place. In usp, evaluation must be explicitly
blocked, hence the QUOTE. Note that rule (6) does call for evaluation.

302 J.R. HOBBS AND S. J. ROSENSCHEIN

The procedure NEC must show that the proposition 0 is true for all possible
worlds. A naive extensional ~eduction like that for FORALL, is not available for
NEe--we cannot cycle through all possible a-lists or s-fists. Therefore we must use
the second method: NEC must show that the set of constraints which define the
possible worlds under consideration imply the truth of the proposition 0. For the
operators FUTURE and P ~ r one could ima~ne interpretations based on both proof-
theoretic methods and on extensional reduction.

All of this highlights the need for a deeper treatment of infinite objects.

4.2.
In this section we shall re-do the example of Section 3.1, show its translation into
a LISP program, and present a possible, though oversimplified, computational
interpretation.

Let us suppose the translation of"temperature" is the function T~MP which takes
a procedure as its argument and checks whether it is a known "temperature-
checking" procedure. By the rules given in Section 4.1 for translating into LISP,
"the temperature" becomes:

(LAMBDA(P)
(FORSOME entity-concepts

(LAMBDA(Y)
(FORALL entity-concepts

(LAMBDA(X)
(AND(IFF(TEMP X)(EQUAL X Y))

((P *) 10)))))).
We can define BE as follows:

BE = (LAMBDA(P)
(LAMBDA(X) ((P *) (INT*(LAMBDA(Y)

(EQUAL(X *) (Y *))))))).
Similarly, NINETY can be defined

NINETY "- (LAMBDA(Q) ((Q *) (INT* 90))).

Thus, "be ninety" becomes

(BE(INT*(FUNCTION NINETY))),
which reduces to

(FUNARG
(LAMBDA(X) ((P *) (INT*(LAMBDA(Y) (EQUAL(X *) (]r ,))))))
((P. (FtrNARG

(LAMBDA(*) G)
((G- (rUNARG

(LAMBDA(Q) ((Q *) 0N'I-* 90)))
NIL))))))).

MAKING COMPUTATIONAL SENSE OF MONTAGUE'S INTENSIONAL LOGIC 303

If THE were defined in a manner similar to BE and NINETY, then the cumbersome
lambda expressions could be replaced by their atomic designators. In this case, the
form actually eval-ed is:

((THE(FUNCTION TEMP)) (INT*(BE(INT*(FUNCTION NINETY.))))).

The result of applying the translation of "the temperature" to the intension of
the translation of "be ninety" (as required by the semantic rules) will be T just in
case there ils one temperature-reading function and that function applied te the
current * returns 90; otherwise the result will be NIL.

5. Context and Expectation
Much has been written about the role of context in the interpretation of words
and sentences. Frequently the context is specified by a natural language descrip-
tion of any circumstances, whether mental, textual, or environmental, which
impinge upon the meaning of the item in question in any way. However, it is
desirable to replace this by something more precise. One possibility is to view
context as the state which the initial conditions and previous text have left the
text processor in. Thus a text would serve as a context for a sentence exactly to
the extent that the state of the processor was altered during the interpretation of
the previous text.

Section 4 suggests a very concise description of the state of a processor in which
the a-list plays a prominent role. A complete state description would contain
control irLformation as well, but for simplicity we will concentrate on the a-list.
By employing ~echniques of dynamically binding variables to valid function
specificati, ons, v e can circumvent the use of special, very complex data structures
and still satisfy Ihe dictum that knowledge "comes in large chunks".

Among the I: :oposals for handling contextual effects is Minsky's [8] notion of
"frames". A frame is a large, complex data structure, possibly with procedures
attached, which expresses the normally true general knowledge about stereotyped
situations. When a frame is accessed, subsequent processing becomes a matter of
filling the slots and noting the exceptions. The claimed strengths of the frames
approach include the existence of default values for unspecified arguments and the
view of expectation as the ability to access pre-stored relevant pieces of knowledge
efficiently. However, since frames as they have been used are amalgams of data
structures and arbitrary procedures, the problems of representation become heavily
involved with issues of encoding. Furthermore, it is unclear how one gets into a
frame, whether one can be in more than one frame at a time, how one gets out of
a frame, how two or more frames can be merged to understand novel texts and
situations, etc. In short, these are structures for which there is no well understood
interpreter.

By using Montague's functional approach to full advantage one can preserve the
spirit of "frames" while overcoming the~e deficiencies. The key i~; to think of

304 J .R . HOBBS AND S. J. ROSENSCHEIN

knowledge as residing in functions, each of which embodies a "core meaning" of a
word (or concept) embedded in a meaningful pattern of function applications, both
referring to the surrounding binding environment. In this view, the "large chunks
of knowledge" are accessed because when a function is ap,',lied, it in turn calls other
functions. The way that functions communicate is by binding and evaluating
variables. Context is the set of active bindings, and the contextual effects of one
function on another are expressed in the ways variables are shared by the functions.
Context is changed when the bindings are updated by the application of a lambda
expression to its arguments. The effect of updating the binding of e, function on the
interpretation of another function may be great or small, depending on how central
or pervasive the first function is in the body of the second. This appears to us as
plausible and as rich a method for context svAtching with selective override and
default as any that have been proposed. The method is both subtle and fluid. The
effects can be made abrupt or slight. The creation of new co,, ~:~:~ goes on all the
time without the need for any special context-switching mechanism.

In order to be more concrete, let us consider the following sentences:

John approached Minneapolis. (16)

John approached maturity. (17)

In (16) "approach" is to be interpreted as motion along a scale of physical distances,
in (17) a scale of development toward realization of some set of properties. In
Jackendoff's [5] formalism "approach" in (16) is in the positional mode. in (17) in
the identificational mode. Which scale or mode is relevant depends on the rest of
the sentence, in particular on the direct object.

With Montague-style patterns of functional application, we can define the words
"approach", "maturity", and "Minneapolis" in the following way:

approach = 2~[).x["~("gz[(3wl) (qw2)
(go(x, wl, w2, Scale)
& exceed(w2, wl, Scale) & re(Scale) = "z)])]],

r, mturity = 2QD.Scale[" Q(^m(Scale))] (growth-scale)I,
Minneapolis -- 2 Q[t.oc(Q(" Minn.)) (̂ Minn)]. (18)

In the definition for "approach", "go(x, w~, w2, Scale)" says that x goes from w~
to w2 on Scale; "exceed(w2, w~, Scale)" says that w2 is closer to the high end of
Scale than w~ is; "~I(Scale) = "z" says that the high end of Scale is "z. In the
definition for "maturity", "2Scale[. • .] (growth-scale)" will bind Scale to growth-
scale ~ithin "approach" when "approach" is applied to "maturity". The core of
"maturity" is re(Scale); it seems appropriate to define maturity as the final point
along a scale of maturation rather than as an arbitrary individual representing
"perfect maturity". The expression "approach maturity" reduces to

2x[(3w,) (3w_.) (go(x, w~, w2, growth-scale) & exceed(wz, wl, growth-scale)

& Hffgrowth-scale) = Hf:(growth-scale))]o

MAKING COMPUTATIONAL SENSE OF MONTAGUE'S INTENSIONAL LOGIC 305

In the defirhtion of "Minneapolis", "Minn" is an entity corresponding to the
individual Minneapolis. "LOC" is an operator whose effect is to bring in bindings
which are appropriate by virtue of Minneapo'.is being a location, it is one device
for encoding the "is-a" or superset relation within the functional approach. LOC
is defined

LOC = 2core[2z[~:~Scale["corej (distance-scale-toward(z))]].

When it is applied within (18),

Minneapolis =).Q[2Scale[" Q(" Minn)] (distance-scale-toward(" Minn))]

results. Thus, Scale is bound to distance-scale-toward("Minn). "Approach
Minneapolis" reduces to

,;.x[(3wl) (3w2) (go(x, w~, w2, distance-scale-toward(" Minn))
& exceed(w2, w~, distance-scale-toward(" Minn))
& m(distance-scale-toward("Minn)) = Minn)].

Here contextual knowledge is brought to bear indi. ,'ctly by the binding patterns,
and the verb "approach" need not even check whether its object is a physical
location or an attributed state.

The frames approach is oriented toward using knowledge of the situation der
scribed in the text, and it seems to be rather weak in utilizing the structure of the
text itself. This may be remedied by adopting an approach closer to the one we
have described.

One of the strengths of Montague's approach is his way of attaching meaning to
the intermediate results, to sentence fragments. For example,

The old overstuffed chair in a dark corner of the room (19)

at the same time creates an image and leaves the reader with a sense of expectation.
In Montague's approach, the image is captured by the "core meaning" of the
function corresponding to (19), and the sense of expectation lies in the fact that the
function has not yet been applied to its argument.

This view of expectation as a function waiting for its argument is adequate
within the boundaries of a sentence. But since each sentence is of type t, there is
no function which is still waiting for its argument intersententially. We might
postulate that an effect of a sentence with respect to the entire text is to set up a
"megafunction" which gets applied to the similar megastructures resulting from
other sentences in the text in much the same way as an English word sets up a
function which gets applied to the other words in the sentence. For example, a
sentence which describes a change of state might be viewed as a function which
takes sentence arguments of a certain type. Sentences are of this type if they
presuppose or assert the final state of the change. This is a very suggestive way
of looking at the notion of expectation. Whether it is a fruitful way remains to be

seen.

306 J. R. HOBBS AND S. J. ROSENSCHEIN

ACKNOWLEDGMENTS
We are indebted to Ralph Grishman and Richard Smaby for their valuable suggestions. This work
was partially supported by ONR Grant N00014-75-C-0571 and CUNY Faculty Research Award
Program Grants Nos. 11233 and 11655.

REFERENCES
1. Davies, D. J. M. and Isard, S. D., Utterances as programs, in: B. Meltzer and D. Michie,

eds., Machine Intelligence 7, New York (1972).
2. Dowty, David R., Montague Grammar and the Lexical Decomposition of Causative Verbs,

in: Barbara H. Partee, ed., Montague Grammar (Academic Press, New York, 1976).
3. Hobbs, Jerry, A model for natural language semantics, part I: the model, Yale University

Department of Computer Science Research Report No. 36 (November 1974).
4. lsard, Stephan, D , What would you have done i f . . . 7, Theoretical Linguistics 1 (3) (1974).
5. Jackendoff, Ray, Toward an explanatory semantic representation, Linguistic Inquiry 7(1)

(Winter 1976) 89-150.
6. Joshi, A. K. and Weischedel, R. M., Some frills for the modal tic-tac-toe of Davies and Isard:

semantics of predicate complement constructions, Proc. Third International Joint Conference
on Artificial Intelligence, Stanford, CA (1973).

7. McCarthy, John, et al., LISP 1.5 Programmer's Manual (M.I.T. Press, Cambridge, MA, 1965).
8. Minsky, Marvin, A framework for representing knowledge, in: Patrick H. Winston, ed., The

Psychology of Computer Vision (McG~w-Hill, New York, 1975).
9. Montague, Richard, The proper treatment of quantification in ordinary English, Approaches

to Natural Language: Proceedings of the 1970 Stanford Workshop on Grammar and Semantics,
Dordrecht (D. Reidel Publishing Company, 1973).

10. Montague, Richard, Formal Philosophy (S~l~cted Papers of Richard Montague, ed. and with
an introduction by Richmond Thomason) (Yale University Press, New Haven and London,
1974).

11. Moses, Joel, The function of FUNC'rIo~ in LISP, AI Memo No. 199 (M.I.T. AI Lab., Cam-
bridge, MA, July 1970).

12. Partee, Barbara Hall, ed., Montague Grmnmar (Academic Press, New York, 1¢~76).
13. Sussman, Gerald, and Steele, Guy, SCHEME: All interpreter for extended lambda calculus,

AI Memo No. 349 (M.I.T. AI Lab., Cambridge, MA, December 1975).
14. Tarski, Alfred, Der Wahrheitsbegriff in dem formalisierten Sprachen, Studia Philosophica I

(1936) 261--405. Translated as: The concept of truth in formalized languages, Logic, Semantics,
Metamathematics, Oxford (1956).

15. Winograd, Terry, Understanding Natural Language (Academic Press, New York, 1972).
16. Woods, William, Procedural semantics for a question-answering machine, Proc. AFIPS 1968

Fall Joint Computer Conference 33 (1968) 457--471 (Thompson Book Company, Washington,
D.C.).

Received December 1976; revised version received October 1977

