
BASEBALL: AN AUTOMATIC QUESTION-ANSWERER

Bert F. Green, Jr., Alice K. Wolf, Carol Chomsky, and Kenneth Laughery
Lincoln Laboratory*, Ifessachusetts Institute of Technology

Lexington 73, Massachusetts

Summary

Baseball is a computer program that answers
questions phrased in ordinary English about stored
data. The program reads the question from punched
cards. After the words and idioms are looked up
in a dictionary, the phrase structure and other
syntactic facts are determined for a content
analysis, which lists attribute-value pairs
specifying the information given and the infor­
mation requested. The requested information is
then extracted from the data matching the speci­
fications, and any necessary processing is done.
Finally, the answer is printed. The program's
present context is baseball games; it answers
such questions as "Where did each team play on
July 7?"

Introduction

Men typically communicate with computers in
a variety of artificial, stylized, unambiguous
languages that are tetter adapted to the machine
than to the man. For convenience and speed,
many future computer-centered systems will
require men to communicate with computers in
natural language. The "business executive, the
military commander, and the scientist need to
ask questions of the computer in ordinary English,
and to have the computer answer questions
directly. Baseball is a first step toward this
goal.

Baseball is a computer program that answers
questions posed in ordinary English about data
in its store. The program consists of two parts.
The linguistic part reads the question from a
punched card, analyzes it syntactically, and
determines what information is given about the
data being requested. The processor searches
through the data for the appropriate information,
processes the results of the search, and prints
the answer.

The program is written in IPL-V , an infor­
mation processing language that uses lists, and
hierarchies of lists, called list structures, to
represent information. Both the data and the
dictionary are list structures, in which items
of information are expressed as attribute-value
pairs, e.g., Team = Red Sox.

^Operated with support from the U.S. Army, Navy,
and Air Force.

The program operates in the context of
baseball data. At present, the data are the month,
day, place, teams and scores for each game in the
American League for one year. In this limited
context, a small vocabulary is sufficient, the
data are simple, and the subject-matter is
familiar.

Some temporary restrictions were placed on
the input questions so that the initial program
could be relatively straightforward. Questions
are limited to a single clause; by prohibiting
structures with dependent clauses the syntactic
analysis is considerably simplified. Logical
connectives, such as and, or, and not, are pro­
hibited, as are constructions implying relations
like most and highest. Finally, questions
involving sequential facts, such as "Did the
Red Sox ever win six games in a row?" are pro­
hibited. These restrictions are temporary
expedients that will be removed in later
versions of the program. Moreover, they do not
seriously reduce the number of questions that
the program is capable of answering. From simple
questions such as "Who did the Red Sox lose to
on July 5?" to complex questions such as "Did
every team play at least once in each park in
each month?" lies a vast number of answerable
questions.

Specification List

Fundamental to the operation of the baseball
program is the concept of the specification list,
o r s P e c list. This list can be viewed as a
canonical expression for the meaning of the
question; it represents the information contained
in the question in the form of attribute-value
pairs, e.g., Team = Red Sox. The spec list is
generated from the question by the linguistic
part of the program, and it governs the operation
of the processor. For example, the question
"Where did the Red Sox play on July 7?" has the
spec list:

Place = ?
Team = Red Sox
Month = July
Day = 7

Some questions cannot be expressed solely
in terms of the main attributes (Month, Day, Place,
Team, Score and Game Serial Number), but require
some modification of these attributes. For
example, on the spec list of "What teams won 10

games in July?", the attribute Team is modified by
Winning, and Game is modified by Number of, yield­
ing

Team, . . s = ?
(winning)

G***(number of) = 1 0

Month = July

Dictionary

The dictionary definitions, which are
expressed as attribute-value pairs, are used by
the linguistic part of the program in generating
the spec list. A complete definition for a word
or idiom includes a part of speech, for use in
determining phrase structure; a meaning, for use
in analyzing content; an indication of whether
the entry is a question-word, e.g., who or how
many; and an indication of whether a word occurs
as part of any stored idiom. Separate diction­
aries are kept for words and idioms, an idiom
being any contiguous set of words that functions
as a unit, having a unique definition.

The meaning of a word can take one of
several forms. It may be a main or derived
attribute with an associated value. For example,
the meaning of the word Team is Team = (blank),
the meaning of Red Sox is Team = Red Sox, and
the meaning of who is Team = ?. The meaning may
designate a subroutine, together with a particular
value, as in the case of modifiers such as
winning, any, six, or how many. For example,
winning has the meaning Subroutine Al = Winning.
The subroutine, which is executed by the content
analysis, attaches the modifier Winning to the
attribute of the appropriate noun. Some words
have more than one meaning; the word Boston
may mean either Place = Boston or Team = Red Sox.
The dictionary entry for such words contains, in
addition to each meaning, the designation of a
subroutine that selects the appropriate meaning
according to the context in which the word is
encounted. Finally, some words such as the, did,
play, etc., have no meaning.

Data

The data are organized in a hierarchical
structure, like an outline, with each level
containing one or more items of information.
Relationships among items are expressed by their
occurrence on the same list, or on associated
lists. The main heading, or highest level of the
structure, is the attribute Month. For each month,
the data are further subdivided by place. Below
each place under each month is a list of all
games played at that place during that month.
The complete set of items for one game is found
by tracing one path through the hierarchy, i.e.
one list at each level. Each path contains

values for each of six attributes, e.g.:

Month = July
Place = Boston

Day = 7
Game Serial No. = 96
(Team = Red Sox, Score = 5)
(Team = Yankees, Score = 3)

The parentheses indicate that each Team must be
associated with its own score, which is done by
placing them together on a sublist.

The processing routines are written to
accept any organization of the data. In fact,
they will accept a non-parallel organization in
which, for example, the data might be as above
for all games through July 31, and then organized
by place, with month under place, for the rest
of the season. The processing routines will also
accept a one-level structure in which each game
is a list of all attribute-value pairs for that
game. The possibility of hierarchical organization
was included for generality and potential
efficiency.

Details of the Program

The program is organized into several
successive, essentially independent routines,
each operating on the output of its predecessor
and producing an input for the routine that
follows. The linguistic routines include
question read-in, dictionary look-up, syntactic
analysis, and content analysis. The processing
routines include the processor and the responder.

Linguistic Routines

Question Read-in. A question for the program
is read into the computer from punched cards.
The question is formed into a sequential list of
words.

Dictionary Look-up. Each word on the
question list is looked up in the word dictionary
and its definition copied. Any undefined words
are printed out. (in the future, with a direct-
entry keyboard, the computer can ask the quest­
ioner to define the unknown words in terms of
words that it knows, and so augment its vocabul­
ary.) The list is scanned for possible idioms;
any contiguous words that form an idiom are re­
placed by a single entry on the question list,
and an associated definition from the idiom
dictionary. At this point, each entry on the list
has associated with it a definition, including a
part of speech, a meaning, and perhaps other
indicators.

Syntax. The syntactic analysis is based on
the parts of speech, which are syntactic cate­
gories assigned to words for use by the syntax

22X
5.2

routine. There are Ik- parts of speech and
several ambiguity markers.

First, the question is scanned for ambigui­
ties in part of speech, which are resolved in
some cases "by looking at the adjoining words, and
in other cases "by inspecting the entire question.
For example, the word score may he either a noun
or a verb; our rule is that, if there is no other
main verb in the question, then score is a verb,
otherwise it is a noun.

Next, the syntactic routine locates and
brackets the noun phrases, E 3 , and the preposit­
ional and adverbial phrases, (). The verb is
left unbracketed. This routine is patterned
after the work of Harris and his associates at
the University of Pennsylvania.2 Bracketing
proceeds from the end of the question to the
beginning. Noun phrases, for example, are
bracketed in the following manner: certain parts
of speech indicate the end of a noun phrase;
within a noun phrase, a part of speech may indi­
cate that the word is within the phrase, or that
the word starts the phrase, or that the word is
not in the phrase, which means that the previous
word started the phrase. Prepositional phrases
consist of a preposition immediately preceding a
noun phrase. The entire sequence, preposition
and noun phrase, is enclosed in prepositional
brackets. An example of a bracketed question is
shown below:

[How many gamesJ did

[the Yankees] play (in [july])?

When the question has been bracketed, any un­
bracketed preposition is attached to the first
noun phrase in the sentence, and prepositional
brackets added. For example, "Who did the Red
Sox lose to on July 5?" becomes "(To [who]) did
I the Red Sox] lose (on TJuly 51)?"

Following the phrase analysis, the syntax
routine determines whether the verb is active or
passive and locates its subject and object.
Specifically, the verb is*passive if and only if
the last verb element in the question is a main
verb and the preceding verb element is some form
of the verb to be. For questions with active
verbs, if a free noun phrase (one not enclosed in
prepositional brackets) is found between two verb
elements, it is marked Subject, and the first free
noun phrase in the question is marked Object.
Otherwise the first free noun phrase is the
subject, the next, if any, is the object. For
passive verbs, the first free noun phrase is
marked Object (since it is the object in the
active form of the question) and all prepositional
phrases with the preposition by have the noun
phrase within them marked Subject. If there is
more than one, the content analysis later chooses

among them on the basis of meaning.

Finally, the syntactic analysis checks to
see if any of the words is marked as a question
word. If not, a signal is set to indicate that
the question requires a yes/no answer.

Content Analysis. The content analysis uses
the dictionary meanings and the results of the
syntactic analysis to set up a specification list
for the processing program. First any subroutine
found in the meaning of any word or idiom in the
question is executed. The subroutines are of two
basic types; those that deal with the meaning of
the word itself and those that in some way change
the meaning of another word. The first chooses
the appropriate meaning for a word with multiple
meanings, as, for example, the subroutine ment­
ioned above that decides, for names of cities,
whether the meaning is Team = A-̂ or Place = Ap.
The second type alters or modifies the attribute
or value of an appropriate syntactically related
word. For example, one such subroutine puts its
value in place of the value of the main noun in
its phrase. Thus Team = (blank) in the phrase
each team becomes Team = each; in the phrase what
te~am, it becomes Team = ?. Another subroutine
modifies the attribute of a main noun. Thus
Team = (blank) in the phrase winning team becomes
Team/wirming\ = (blank). In the question "Who
beat the Yankees on July 4?", this subroutine,
found in the meaning of beat, modifies the
attribute of the subject and object, so that
Team = ? and Team = Yankees are rendered
Teamfvinning) = ? and Team(losing) = Yankees.
Another subroutine combines these two operations:
it both modifies the attribute and changes the
value of the main noun. Thus, Game = (blank) in
the phrase six games becomes Game(numt)er of) - &,
and in the phrase how many games becomes

Game(number of) = ?-

After the subroutines have been executed,
the question is scanned to consolidate those
attribute-value pairs that must be represented on
the specification list as a single entry. For
example, in "Who was the winning team..." Team = ?
and Team/winning) = (blank) must be collapsed into
Team(winning) = •• Next, successive scans will
create any sublists implied by the syntactic
structure of the question. Finally, the composite
information for each phrase is entered onto the
spec list. Depending on its complexity, each
phrase furnishes one or more entries for the list.
The resulting spec list is printed in outline
form, to provide the questioner with some inter­
mediate feedback.

Processing Routine

Processor. The specification list indicates
to the processor what part of the stored data is
relevant for answering the input question. The

processor extracts the matching information from
the data and produces, for the responder, the
answer to the question in the form of a list
structure.

The core of the processor is a search routine
that attempts to find a match, on each path of a
given data structure, for all the attribute-value
pairs on the spec list; when a match for the whole
spec list is found on a given path, these pairs
relevant to the spec list are entered on a found
list. A particular spec list pair is considered
matched when its attribute has "been found on a
data path and, either the data value is the same
as the spec value, or the spec value is ? or each,
in which case any value of the particular attribute
is a match. Matching is not always straight­
forward. Derived attributes and some modified
attributes are functions of a number of attributes
on a path and must be computed before the values
can be matched. For example, if the spec entry
is Home Team = Red Sox, the actual home team for
a particular path must be computed from the
place and teams on that path before the spec
value Red Sox can be matched with the computed
data value. Sublists also require special
handling because the entries on the sublist must
sometimes be considered separately and sometimes
as a unit in various permutations.

The found list produced by the search routine
is a hierarchical list structure containing one
main or derived attribute on each level of each
path. Each path on the found list represents the
information extracted from one or more paths of
the data. For example, for the question "Where
did each team play in July?", a single path
exists, on the found list, for each team which
played in July. On the level below each team,
all places in which that team played in July
occur on a list that is the value of the attribute
Place. Each path on the found list may thus
represent a condensation of the information
existing on many paths of the search data.

Many input questions contain only one query,
as in the question above, i.e., Place = ?. These
questions are answered, with no further processing,
by the found list produced by one execution of
the search routine. Others require simple pro­
cessing on all occurrences of the queried attri­
bute on the generated found list. The question
"In how many places did each team play in July?"
requires a count of the places for each team,
after the search routine has generated the list
of places for each team.

Other questions imply more than one search
as well as additional processing. For a spec
attribute with the value every, a comparison with
a list of all possible values for that attribute
must be made after the search routine has
generated lists of found values for that attribute.

Then, since only those found list paths for which
all possible values of the attribute exist should
remain on the found list as the answer to the
question, the search routine, operating on this
found list as the data, is again executed. It
now generates a new found list containing all the
data paths for which all possible values of the
attribute were found. Likewise, questions
involving a specified number, such as k teams,
imply a search for which teams, a count of the
teams found on each path, and a search of the
found list for paths containing k teams.

In general, a question may contain implicit
or explicit queries. Since these queries must
be answered one at a time, several searches,
with intermediate processing, are required. The
first search operates on the stored data while
successive searches operate on the found list
generated by the preceding search operation.
As an example, consider the question "On how
many days in July did eight teams play?" The
spec list is

Day (number of) = ? ;
Month = July;
Team (number of) = 8 .

On the first pass, the implicit question which
teams is answered. The spec list for the first
search is

Day = Each;
Month = July;
Team = ? .

The found data is a list of days in July; for
each day there is a list of teams that played on
that date. Following this search, the processor
counts the teams for each day and associates the
count with the attribute Team. On the second
search, the spec list is

Day = ? ;
Month = July;
Team (number of) = 8 .

The found data is a list of days in July on which
eight teams played. After this pass, the pro­
cessor counts the days, addsthe count to the
found list and is finished.

Responder. No attempt has yet been made to
respond in grammatical English sentences. Instead,
the final found list is printed, in outline form.
For questions requiring a yes/no answer, YES is
printed along with the found list. If the search
routine found no matching data, NO is printed for
yes/no questions, and NO DATA for all other cases.

Discussion Finally, he can often judge whether the answer
is reasonable.

The differences between Baseball and both
automatic language translation and information
retrieval should now be evident. The linguistic
part of the baseball program has as its main goal
the understanding of the meaning of the question
as embodied in the canonical specification list.
Syntax must be considered and ambiguities resolved
in order to represent the meaning adequately.
Translation programs have a different goal: trans­
forming the input passage from one natural language
to another. Meanings must be considered and
ambiguities resolved to the extent that they
effect the correctness of the final translation.
In general, translation programs are concerned
more with syntax and less with meaning than the
Baseball program.

Baseball differs from most retrieval systems
in the nature of its data. Generally the ret­
rieval problem is to locate relevant documents.
Each document has an associated set of index
numbers describing its content. The retrieval
system must find the appropriate index numbers
for each input request and then search for all
documents bearing those index numbers. The basic
problem in such systems is the assignment of index *
categories. In Baseball, on the other hand, the
attributes of the data are very well specified.
There is no confusion about them. However,
Baseball's derived attributes and modifiers imply
a great deal more data processing than most
document retrieval programs. (Baseball does bear
a close relation with the ACSI-M&TIC system
discussed by Miller et al at the i960 Western
Joint Computer Conference.3)

The concept of the spec list can be used to
define the class of questions that the baseball
program can answer. It can answer all questions
whose spec list consists of attribute-value pairs
that the program recognizes. The attributes may
be modified or derived, and the values may be
definite or queries. Any combination of attribute-
value pairs constitutes a specification list.
Many will be nonsense, but all can be answered.
The number of questions in the class is, of
course, infinite, because of the numerical values.
But even if all numbers are restricted to two
digits, the program can answer millions of mean­
ingful questions.

The present program, despite its restrictions,
is a very useful communication device. Any
complex question that does not meet the restrict­
ions can always be broken up into several simpler
questions. The program usually rejects questions
it cannot handle, in which case the questioner
may rephrase his question. He can also check
the printed spec list to see if the computer is
on the right track, in case the linguistic program
has erred and failed to detect its own error.

Next Steps

No important difficulty is expected in
augmenting the program to include logical
connectives, negatives, and relation words. The
inclusion of multiple-clause questions also seems
fairly straightforward, if the questioner will
mark off for the computer the boundaries of his
clauses." The program can then deal with the
subordinate clauses one at a time before it deals
with the main clause, using existing routines.
On the other hand, if the syntax analysis is
required to determine the clause boundaries as
well as the phrase structure, a much more
sophisticated program would be required.

The problem of recognizing and resolving
semantic ambiguities remains largely unsolved.
Determining vhat is meant by the question "Did
the Red Sox win most of their games in July?"
depends on a much larger context than the
immediate question. The computer might answer
all meaningful versions of the question (we know
of five), or might ask the questioner which
meaning he intended. In general, the facility
for the computer to query the questioner is
likely to be the most powerful improvement.
This would allow the computer to increase its
vocabulary, to resolve ambiguities, and perhaps
even to train the questioner in the use of the
program.

Considerable pains were taken to keep the
program general. Most of the program will remain
unchanged and intact in a new context, such as
voting records. The processing program will
handle data in any sort of hierarchical form, and
is indifferent to the attributes used. The syntax
program is based entirely on parts of speech,
which can easily be assigned to a new set of words
for a new context. On the other hand, some of the
subroutines contained in the dictionary meanings
are certainly specific to baseball; probably each
new context would require certain subroutines
specific to it. Also, each context might intro­
duce a number of modifiers and derived attributes
that would have to be defined in terms of special
subroutines for the processor. Hopefully, all
such occasions for change have been isolated in a
small area of special subroutines, so that the
main routines can be unaltered. However, until
we have actually switched contexts, we cannot say
definitively that we have been successful in
producing a general question-answering program.

Acknowledgment

The Baseball program was conceived by
Fredrick C. Frick, Oliver G. Selfridge, and
Gerald P. Dineen, whose continued guidance is

gratefully acknowledged,

References

1. A. Newell and F. Tonge, "An introduction to
Information Processing Language V", Commun.
Assoc. for Computing Mach., Vol. 3, pp. 205-
211; April, I960.

2. See the project summary, "by Z. S. Harris, in
Current Research and Development in Scientific
Documentation No. 6, pp. 52-53, Hat'l
Sciences Foundation, J&y, I960.

3. L. Miller, J. Minker, W. G. Reed, and w. E.
Shindle, "A multi-level file structure for
information processing", Proceedings Western
Joint Computer Conference, Vol. IT, px>. 53-
59, Ma,y, I960.

