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1 . Introduction 

The history of communication between man and machines has followed 
a path of increasing provision for the convenience and ease of commu- 
nication on the part of the human . From raw binary and octal numeric 
machine languages. through various symbolic assembly. scientific. busi- 
ness and higher level languages. programming languages have increas- 
ingly adopted notations that are more natural and meaningful to a human 
user . The important characteristic of this trend is the elevation of the 
level at which instructions are specified from the low level details of the 
machine operations to high level descriptions of the task to be done. 
leaving out details that can be tilled in by the computer . The ideal product 
of such continued evolution would be a system in which the user specifies 
what he wants done in a language that is so natural that negligible mental 
effort is required to recast the specification from the form in which he 
formulates it to that which the machine requires . The logical choice for 
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such a language is the person’s own natural language (which in this paper 
I will assume to be English). 

For a naive, inexperienced user, almost every transaction with current 
computer systems requires considerable mental effort deciding how to 
express the request in the machine’s language. Moreover, even for tech- 
nical specialists who deal with a computer constantly, there is a distinc- 
tion between the things that they do often and remember well, and many 
other things that require consulting a manual and/or much conscious 
thought in order to determine the correct machine “incantation” to 
achieve the desired effect. Thus, whether a user is experienced or naive, 
and whether he is a frequent or occasional user, there arise occasions 
where he knows what he wants the machine to do and can express it in 
natural language, but does not know exactly how to express it to the 
machine. A facility for machine understanding of natural language could 
greatly improve the efficiency of expression in such situations-both in 
speed and convenience, and in decreased likelihood of error. 

For a number of years, I have been pursuing a long range research 
objective of making such communication possible between a man and a 
machine. During this period, my colleagues and I1 have constructed 
several natural language question-answering systems and developed a 
few techniques for solving some of the problems that arise. In this paper, 
I will present some of those techniques, focusing on the problem of 
handling natural quantification as it occurs in English. As an organizing 
principle, I will present the ideas in a roughly historical order, with 
commentary on the factors leading to the selection of various notations 
and algorithms, on limitations that have been discovered as a result of 
experience, and on directions in which solutions lie. 

Among the systems that I will use for examples are a flight schedules 
question-answering system (Woods, 1967, 1968), a system. to ask ques- 
tions about an augmented transition network (ATN) grammar (not pre- 
viously published), the LUNAR system, which answers questions about 
the chemical analyses of the Apollo 11 moon rocks (Woods et ai., 1972; 
Woods, 1973b), and a system for natural language trip planning and 
budget management (Woods et al., 1976). 

Some of the techniques used in these systems, especially the use of 
the ATN grammar formalism (Woods, 1969, 1970, 1973a), have become 
widely known and are now’ being used in many different systems and 
applications. However, other details, including the method of performing 
semantic interpretation, the treatment of quantification and anaphoric 

Principal contributors to one or more of the systems described here include Madeleine 
Bates, Bertram Bruce, Ronald Kaplan, and Bonnie Nash-Webber (now Webber). 
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reference, and several other problems, have not been adequately de- 
scribed in accessible publications. 

This paper is intended to be a discussion of a set of techniques, the 
problems they solve, and the relative advantages and disadvantages of 
several alternative approaches. Because of the length of the presentation, 
no attempt has been made to survey the field or give an exhaustive 
comparison of these techniques to those of other researchers. In general, 
most other systems are not sufficiently formalized at a conceptual level 
that such comparisons can be made on the basis of published information. 
In some cases, the mechanisms described here can be taken as models 
of what is being done in other systems. Certainly, the general notion of 
computing a representation of the meaning of a phrase from representa- 
tions of the meanings of its constituents by means of a rule is sufficiently 
general to model virtually any semantic interpretation process. The de- 
tails of how most systems handle such problems as the nesting of multiple 
quantification, however, are difficult to fathom. Hopefully the presenta- 
tion here and the associated discussion will enable the reader to evaluate 
for himself, with some degree of discrimination, the capabilities of other 
systems. 

2. Historical Context 

2.1 Airlines Flight Schedules 

Airlines flight schedules was the focusing context for a gedanken sys- 
tem for semantic interpretation that I developed as my Ph.D. thesis at 
Harvard University (Woods, 1967). In that thesis, I was concerned with 
the problem of “semantic interpretation”-making the transition from a 
syntactic analysis of input questions (such as could be produced by 
parsing with a formal grammar of English) to a concrete specification of 
what the computer was to do to answer the question. Prior to that time, 
this problem had usually been attacked by developing a set of structural 
conventions for storing answers in the data base and transforming the 
input questions (frequently by ad hoc procedures) into patterns that could 
be matched against that data base. Simmons (1965) presents a survey of 
the state of the art of the field at that time.. 

In many of the approaches existing at that time, the entire process of 
semantic interpretation was built on particular assumptions about the 
structure of the data base. I was searching for a method of semantic 
interpretation that would be independent of particular assumptions about 
data base structure and, in particular, would permit a single language 
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understanding system to talk to many different data bases and permit the 
specification of requests whose answers required the integration of in- 
formation from several different data bases. In searching for such an 
approach, I looked more to the philosophy of language and the study of 
meaning than to data structures and data base design. 

The method I developed was essentially an interpretation of Carnap’s 
notion of truth conditions (Carnap, 1964a). I chose to represent those 
truth conditions by formal procedures that could be executed by a ma- 
chine. The representation that I used for expressing meanings was at 
once a notational variant of the standard predicate calculus notation and 
also a representation of an executable procedure. The ultimate definition 
of the meanings of expressions in this notation were the procedures that 
they would execute to determine the truth of propositions, compute the 
answers to questions, and carry out commands. This notion, which I 
referred to as “procedural semantics,” picks up the chain of semantic 
Specification from the philosophers at the level of abstract truth condi- 
tions, and carries it to a formal specification of those truth conditions as 
procedures in a computer language. 

The idea of procedural semantics has since had considerable success 
as an engineering technique for constructing natural language understand- 
ing systems, and has also developed somewhat as a theory of meaning. 
In my paper “Meaning and Machines” (Woods, 1973c), I discuss some 
of the more theoretical issues of the adquacy of procedural semantics as 
a theory of meaning. 

The flight schedules application initially served to focus the issues on 
particular meanings of particular sentences. The application assumed a 
data base essentially the same as the information contained in the Official 
Airline Guide (OAG, 1966)-that is, a list of flights, their departure and 
arrival times from different airports, their flight numbers and airlines, 
number of stops, whether they serve meals, etc. Specific questions were 
interpreted as requesting operations to be performed on the tables that 
make up this data base to compute answers. 

The semantic interpretation system presented in my thesis was sub- 
sequently implemented for this application with an ATN grammar of 
English to provide syntax trees for interpretation, but without an actual 
data base. The system produced formal semantic interpretations for ques- 
tions such as: 

“What flights go from Boston to Washington?” 
“Is there a flight to Washington before 8: 00 A.M.?” 
“Do they serve lunch on the 11 : 00 A.M. flight to Toronto?” 
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2.2 Answering Questions about ATN Grammars 
To prove the point that the semantic interpretation system used in the 

flight schedules domain was in fact general for arbitrary data bases and 
independent of the detailed structure of the data base, immediately after 
completing that system, I looked for another data base to which I could 
apply the method. I wanted a data base that had not been designed to 
satisfy any assumptions about the method of question interpretation to 
be used. The most convenient such data base that I had at hand was the 
data structure for the ATN grammar that was being used by the system 
to parse its input sentences. This data base had a structure that was 
intended to support the parser, and had not been designed with any 
forethought to using it as a data base for question answering. 

An ATN grammar, viewed as a data base, conceptually consists of a 
set of named states with arcs connecting them, corresponding to transi- 
tions that can be made in the course of parsing. Arcs connecting states 
are of several kinds depending on what, if anything, they consume from 
the input string when they are used to make a transition. For example, 
a word arc consumes a single word from the input, a push arc consumes 
a constituent phrase of the type pushed for, and a jump arc consumes no 
input but merely makes a state transition (see Woods, 1970, 1973a, 197Sa, 
for further discussion of ATN grammars). These states and arcs consti- 
tute the data base entities about which questions may be asked. 

In addition to the entities that actually exist as data objects in the 
internal structure for the grammar, there are some other important objects 
that exist conceptually but are not explicit in the grammar. The most 
important such entity is a path. A path is a sequence of arcs that connect 
to each other in the order in which they could be taken in the parsing of 
a sentence. Although paths are implicit in the grammar, they are not 
explicit in the data structure, i.e., there is no internal data object that 
can be pointed to in the grammar that corresponds to a path. Neverthe- 
less, one should be able to talk about paths and ask questions about 
them. The techniques I will describe can handle such entities. 

Examples of the kinds of sentences this “grammar information sys- 
tem” could deal with are 

“Is there a jump arc from state S/ to S/NP?” 
“How many arcs leave state NP/?” 
“How many nonlooping paths connect state S/ with WPOP?” 
“Show me all arcs entering state S/VP.” 

2.3 The LUNAR System 

The LUNAR system (Woods et al. ,  1972; Woods, 1973b) was originally 
developed with support from the NASA Manned Spacecraft Center as a 
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research prototype for a system to enable a lunar geologist to  conven- 
iently access, compare, and evaluate the chemical analysis data on lunar 
rock and soil composition that was accumulating as a result of the Apollo 
moon missions. The target of the research was to develop a natural 
language understanding facility sufficiently natural and complete that the 
task of selecting the wording for a request would require negligible effort 
for the geologist user. 

The application envisaged was a system that would be accessible to 
geologists anywhere in the country by teletype connections and would 
enable them to access the NASA data base without having to learn either 
the programming language in which the system was implemented or the 
formats and conventions of the data base representations. For example, 
the geologist should be able to ask questions such as “What is the average 
concentration of aluminum in high-alkali rocks?” without having to know 
that aluminum was conventionally represented in the data base as 
AL203, that the high-alkali rocks (also known as “volcanics” or “fine- 
grained igneous”) were conventionally referred to  as TYPEAS in the 
data base, nor any details such as  the name of the file on which the data 
was stored, the names of the fields in the data records, or any of a myriad 
of other details normally required to use a data base system. 

To a substantial extent, such a capability was developed, although 
never fully put to the test of real operational use. In a demonstration of 
a preliminary version of the system in 1971 (Woods, 1973b), 78% of the 
questions asked of the system were understood and answered correctly, 
and another 12% failed due to trivial clerical errors such as dictionary 
coding errors in the not fully debugged system. Only 10% of the questions 
failed because of significant parsing or semantic interpretation problems. 
Although the requests entered into the system were restricted to ques- 
tions that were in fact about the contents of the data base, and compar- 
atives (which were not handled at that time) were excluded, the requests 
were otherwise freely expressed in natural English without any prior 
instructions as to phrasing and were typed into the system exactly as 
they were asked. 

The LUNAR system allowed a user to ask questions, compute aver- 
ages and ratios, and make listings of selected subsets of the data. One 
could also retrieve references from a keyphrase index and make changes 
to the data base. The system permitted the user to easily compare the 
measurements of different researchers, compare the concentrations of 
elements or isotopes in different types of samples or in different phases 
of a sample, compute averages over various classes of samples, compute 
ratios of two constituents of a sample, etc., all in straightforward natural 
English. 
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Examples of requests understood by the system are 
“Give me all lunar samples with magnetite.” 
“In which samples has apatite been identified?” 
“What is the specific activity of A126 in soil?” 
“Analyses of strontium in plagioclase.” 
“What are the plag analyses for breccias?” 
“What is the average concentration of olivine in breccias?” 
“What is the average age of the basalts?” 
“What is the average potassiudrubidium ratio in basalts?” 
“In which breccias is the average concentration of titanium greater 

than 6 percent?” 

2.4 TRIPSYS 

TRIPSYS is a system that was developed as the context for a research 
project in continuous speech understanding (Woods ef al., 1976). The 
overall system of which it was a part was called HWIM (for “Hear What 
I Mean”). TRIPSY S understands and answers questions about planned 
and taken trips, travel budgets and their status, costs of various modes 
of transportation to various places, per diems in various places, confer- 
ences and other events for which trips might be taken, people in an 
organization, the contracts they work on, the travel budgets of those 
contracts, and a variety of other information that is useful for planning 
trips and managing travel budgets. It is intended to  be a small-scale 
example of a general management problem. TRIPSYS also permits some 
natural language entry of information into the data base, and knows how 
to prompt the user for additional information that was not given volun- 
tarily. Examples of the kinds of requests that TRIPSYS was designed to 
handle are 

“Plan a trip for two people to  San Diego to attend the ASA meeting.” 
“Estimate the cost of that trip.” 
“Is there any money left in the Speech budget?” 

3. Overview 

Since the LUNAR system is the most fully developed and most widely 
known of the above systems, I will use it as the principal focus throughout 
this paper. A brief overview of the LUNAR system was presented in the 
1973 National Computer Conference (Woods, 1973b), and an extensive 
technical report documenting the system was produced (Woods ef al., 
1972). However, there has been no generally available document that 
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gives a sufficiently complete picture of the capabilities of the system and 
how it works. Consequently, I will first give a brief introduction to the 
structure of the system as a whole, and then proceed to relatively detailed 
accounts of some of the interpretation problems that were solved. Ex- 
amples from the other three systems will be used where they are more 
self-explanatory or more clearly illustrate a principle. Where the other 
systems differ in structure from the LUNAR system, that will be pointed 
out. 

3.1 St ruc tu re  of t h e  LUNAR System 

The LUNAR system consists of three principal components: a general 
purpose grammar and parser for a large subset of natural English, a rule- 
driven semantic interpretation component using pattern + action rules 
for transforming a syntactic representation of an input sentence into a 
representation of what it means, and a data base retrieval and inference 
component that stores and manipulates the data base and performs com- 
putations on it. The first two components constitute a language under- 
standing component that transforms an input English sentence into a 
disposable program for carrying out its intent (answering a question or 
making some change to the data base). The third component executes 
such programs against the data base to determine the answer to queries 
and to effect changes in the data base. 

The system contains a dictionary of approximately 3500 words, a gram- 
mar for a fairly extensive subset of natural English, and two data bases: 
a table of chemical analyses with 13,000 entries, and a topic index to 
documents with approximately 10,000 postings. The system also contains 
facilities for morphological analysis of regularly inflected words, for main- 
taining a discourse directory of possible antecedents for pronouns and 
other anaphoric expressions, and for determining how much and what 
information to display in response to a request. 

The grammar used by the parsing component of the system is an 
augmented transition network (ATN). The ATN grammar model has been 
relatively well documented elsewhere (Woods, 1970, 1973a), so I will not 
go into detail here describing it, except to point out that it produces 
syntactic tree structures comparable to the “deep structures” assigned 
by a Chomsky type transformational grammar, vintage 1965 (Chomsky, 
1965). Likewise, I will not go into much detail describing the inner 
workings of the data base inference and retrieval component, except to 
describe the semantics of the formal meaning representation language 
and discuss some of its advantages. What I will describe here are the 
problems of semantic interpretation that were handled by the system. 
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All of the systems mentioned in Section 2 share this same basic struc- 
ture with the following exceptions: 

1) The airline flight schedules problem was implemented up through 
the parsing and interpretation stage, but was never coupled to a real data 
base. This system was implemented solely to validate the formal semantic 
interpretation procedure. 

2) The TRIPSYS system does not construct a separate syntactic tree 
structure to be given to a semantic interpreter, but rather the ATN 
grammar builds semantic interpretations directly as its output represen- 
tation. 

3.2 Semantics in LUNAR 

A semantic specification of a natural language consists of essentially 
three parts: 

a) a meaning representation language (MRL)-a notation for semantic 
representation for the meanings of sentences, 

b) a specification of the semantics of the MRL notation, i.e., a spec- 
ification of what its expressions mean, and 

c) a semantic interpretation procedure, i.e., a procedure to construct 
the appropriate semantic representations for a given natural language 
sentence. 

Accordingly, the semantic framework of the LUNAR system consists 
of three parts: a semantic notation in which to represent the meanings of 
sentences, a specification of the semantics of this notation (by means of 
formal procedures), and a procedure for assigning representations in the 
notation to input sentences. 

In previous writings on LUNAR, I have referred to the semantic 
notation. as a query language, but I will refer to it here, following a 
currently more popular terminology as a “meaning representation lan- 
guage” or MRL. To represent expressions in the MRL, I will use the so- 
called “Cambridge Polish” notation in wich the application of an operator 
to its arguments is represented with the operator preceding its operands 
and the entire group surrounded by parentheses. This notation places the 
operator in a standard position independent of the number of arguments 
it takes and uses the parentheses to indicate scoping of operators rather 
than depending on a fixed degree of the operator as in the “ordinary” 
Polish prefix notation (thus facilitating operators that take a variable 
number of arguments). Cambridge Polish notation is the notation used 
for the S-expressions of the programming language LISP (Bobrow et al., 
1968), in which LUNAR is implemented. 
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Occasionally, the notations used for illustration will be slightly simpli- 
fied from the form actually used in LUNAR to avoid confusion. For 
example, the DATALINE function used in LUNAR actually takes an 
additional argument for a data file that is omitted here. 

4. The Meaning Representation Language 

There are a number of requirements for a meaning representation 
language, but the most important ones are these: 

a) It must be capable of representing precisely, formally, and unam- 
biguously any interpretation that a human reader can place on a sentence. 

b) It should facilitate an algorithmic translation from English senten- 
ces into their corresponding semantic representations. 

c) It should facilitate subsequent intelligent processing of the resulting 
interpretation. 

The LUNAR MRL consists of an extended notational variant of the 
ordinary predicate calculus notation and contains essentially three kinds 
of constructions: 

0 designators, which name or denote objects (or classes of objects) 
in the database, 

0 propositions, which correspond to statements that can be either 
true or false in the data base, and 

0 commands, which initiate and carry out actions. 

4.1 Designators 

Designators come in two varieties-individual specifiers and class spe- 
cifiers. Individual specifiers correspond to proper nouns and variables. 
For example, S10046 is a designator for a particular sample, OLIV is a 
designator for a certain mineral (olivine), and X3 can be a variable 
denoting any type of object in the data base. Class specifiers are used to 
denote classes of individuals over which quantification can range. They 
consist of the name of an enumeration function for the class plus possible 
arguments. For example, (SEQ TYPECS) is a specification of the class 
of type C rocks (i.e., breccias) and (DATALINE S10046 OVERALL 
OLIV) is a specification of the set of lines of a table of chemical analyses 
corresponding to analyses of sample S10046 for the overall concentration 
of olivine. 
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4.2 Propositions 

Elementary propositions in the MRL are formed from predicates with 
designators as arguments. Complex propositions are formed from these 
by use of the logical connectives AND, OR, and NOT and by quantifi- 
cation. For example, (CONTAIN S10046 OLIV) is a proposition formed 
by substituting designators as arguments to the predicate CONTAIN, 
and 

(AND (CONTAIN X3 OLIV) (NOT (CONTAIN X3 PLAG))) 
is a complex proposition corresponding to the assertion that X3 contains 
olivine but does not contain plagioclase. 

4.3 Commands 

Elementary commands consist of the name of a command operator 
plus arguments. As for propositions, complex commands can be con- 
structed using logical connectives and quantification. For example, TEST 
is a command operator for testing the truth value of a proposition given 
as its argument. Thus 

(TEST (CONTAIN S10046 OLIV)) 
will answer yes or no depending on whether sample S10046 contains 
olivine. Similarly, PRINTOUT is a command operator which prints out 
a representation for a designator given as its argument. 

4.4 Quantification 

An important aspect of the meaning of English sentences that must be 
captured in any MRL is the use of quantifiers such as “every” and 
“some.” Quantification in the LUNAR MRL is represented in an elab- 
orated version of the traditional predicate calculus notation. An example 
of an expression in this notation is 

(FOR EVERY XI / (SEQ SAMPLES) : 
(CONTAIN X1 OVERALL SILICON) ; (PRINTOUT XI)). 

This says, “for every object X1 in the set of samples such that X1 
contains silicon, print out (the name of) Xl.” 

In general, an instance of a quantified expression takes the form 
(FOR (quant) X / (class) : (p X) ; (q X)) 

where (quant) is a specific quantifier such as EVERY or SOME, X is 
the variable of quantification and occurs open in the expressions (p X) 
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and (q X), (class) is a set over which quantification is to range, (p X) is 
a proposition that restricts the range, and (q X) is the expression being 
quantified (which may be either a proposition or a command). 

For the sake of simplifying some examples, I will generalize the format 
of the quantification operator so that the restriction operation implied by 
the ":" can be repeated any number of times (including zero if there is 
no further restriction on the range), giving rise to forms such as 

(FOR (quant) X / (class) ; (q X) ) 

and 

(FOR (quant) X / (class) : (p X) : (r X) ; (q X) ). 

When there is no restriction on the range of quantification, this can also 
be indicated by using the universally true proposition T, as in 

(FOR (quant) X I (class) : T ; (q X) ). 

4.5 Specification of the MRL Syntax 

A formal BNF specification of the LUNAR MRL is given here: 

(expression) = (designator) I (proposition) I (command) 
(designator) = (individual constant) 1 

(variable) I 
((function) (expression)* ) 

(proposition) = (elementary proposition) I 
(quantified proposition) 

(elementary proposition) = ((propositional operator) 

(propositional operator) = (predicate) I (logical operator) 
(logical operator) = AND I OR I NOT I IF-THEN . . . 
(quantified proposition) = (FOR (variable) / (class) ; 

(class) = (elementary class) I (restricted class) 
(elementary class) = (class name) I 

(restricted class) = (class) : (proposition) 
(command) = (elementary command) I (quantified command) 
(elementary command) = ((command operator) (expression)* ) 
(quantified command) = (FOR (variable) / (class) ; (command)) 

In addition to the above BNF constraints, each general operator (i,e., 
function, predicate, logical operator, class function, or command opera- 
tor) will have particular restrictions on the number and kinds of expres- 

(expression)* ) 

(proposition)) 

((class function) (expression)* ) 
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sions that it can take as arguments in order to be meaningful. Each 
operator also specifies which of its arguments it takes literally as given, 
and which it will evaluate to obtain a referent (see discussion of opaque 
contexts below). 

Predicates, functions, class names, class functions, command opera- 
tors, and individual constants are all domain-dependent entities which 
are to be specified for a particular application domain and defined in 
terms of procedures. In LUNAR, they are defined as LISP subroutines. 
Individual constants are defined by procedures for producing a reference 
pointer to the appropriate internal object in the computer’s model of the 
world; functions are defined by procedures for producing a reference 
pointer to the appropriate value given the values for the arguments; class 
names and class functions are defined by procedures that (given the 
appropriate values for arguments) can enumerate the members of their 
class one at a time; predicates are defined by procedures which, given 
the values of their arguments, determine a truth value for the correspond- 
ing proposition; and command operators are defined by procedures 
which, given the values of their arguments, can carry out the correspond- 
ing commands. 

I should point out that the defintion given here for classes and com- 
mands are not adequate for a general theory of semantics, but are rather 
more pragmatic definitions that facilitate question answering and com- 
puter response to commands. For a general semantic theory, the require- 
ment for semantic definition of a class is merely a procedure for recog- 
nizing a member, and the semantic definition for a command is a 
procedure for recognizing when it has been carried out. That is, to be 
said to know the meaning of a command does not require the ability to 
carry it out, and to know the meaning of a noun does not require an 
ability to enumerate all members of its extension. The distinction between 
knowing how, and just knowing whether, marks the difference between 
pragmatic utility and mere semantic adequacy. The requirements placed 
on the definitions of the classes and commands in the LUNAR system 
are thus more stringent than those required for semantic definition alone. 

4.6 Proced u ral/Declarative Duality 

The meaning representation language used in LUNAR is intended to 
serve both as a procedural specification that can be executed to compute 
an answer or carry out a command, and as a “declarative” representation 
that can be manipulated as a symbolic object by a theorem prover or 
other inference system. By virtue of the definition of primitive functions 
and predicates as LISP functions, the language can be viewed simulta- 
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neously as a higher level programming language and as an extension of 
the predicate calculus. This gives rise to two different possible types of 
inference for answering questions, corresponding roughly to Carnap’s 
distinction between inrension and extension (Carnap, 1964b). First, be- 
cause of its definition by means of procedures, a question such as “Does 
every sample contain silicon?” can be answered extensionally (that is, 
by appeal to the individuals denoted by the class name “samples”) by 
enumerating the individual samples and checking whether silicon has 
been found in each one. On the other hand, this same question could 
have been answered intensionally (that is, by consideration of its meaning 
alone without reference to the individuals denoted) by means of the 
application of inference rules to other (intensional) facts (such as the 
assertion “Every sample contains some amount of each element”). Thus 
the expressions in the meaning representation language are capable either 
of direct execution against the data base (extensional mode) or manipu- 
lation by mechanical inference algorithms (intensional mode). 

In the LUNAR system, the principal mode of inference is extensional, 
that is, the direct evaluation of the formal MRL expression as a proce- 
dure. However, in certain circumstances, this expression is also manip- 
ulated as a symbolic object. Such cases include the construction of 
descriptions for discourse entities to serve as antecedents for anaphoric 
expressions and the use of “smart quantifiers” (to be discussed later) 
for performing more efficient quantification. Extensional inference has a 
variety of limitations (e.g., it is not possible to prove assertions about 
infinite sets in extensional mode), but it is a very efficient method for a 
variety of question-answering applications. 

4.7 Opaque Contexts 

As mentioned above, the general operators in the meaning represen- 
tation language are capable of accessing the arguments they are given 
either literally or after evaluation. Thus, an operator such as ABOUT in 
an expression like 

(ABOUT D70-181 (TRITIUM PRODUCTION) ) 

(meaning “Document D70-181 discusses tritium production”) can indi- 
cate as part of its definition that, in determining the truth of an assertion, 
the first argument (D70-181 in this case) is to be evaluated to determine 
its referent, while the second argument (TRITIUM PRODUCTION) is 
to be taken unevaluated as an input to the procedure (to be used in some 
special way as an intensional object-in this case, as a specification of 
a topic that D70-181 discusses). 
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This distinction between two types of argument passing is a relatively 
standard one in some programming languages, frequently referred to as 
call by value versus call by name. In particular, in the programming 
language LISP, there are two types of functions (referred to as LAMBDA 
and NLAMBDA functions), the first of which evaluates all of its argu- 
ments and the second of which passes all of its arguments unevaluated 
to the function (which then specifies in its body which arguments are to 
be evaluated and what to do with the others). 

This ability to pass subordinate expressions literally as intensional 
objects (to be manipulated in unspecified ways by the operator that gets 
them) avoids several of the antinomies that have troubled philosophers, 
such as the nonequivalence of alternative descriptions of the same object 
in belief contexts. Although belief contexts do not occur in LUNAR, 
similar problems occur in TRIPSYS, for example, in interpreting the 
object of the verb “create,” where the argument to the verb is essentially 
a description of a desired object, not an object denoted by the description. 

In LUNAR, functions with opaque contexts are also used to define the 
basic quantification function FOR as well as general purpose counting, 
averaging, and extremal functions: NUMBER, AVERAGE, MAXI- 
MUM, and MINIMUM. Calls to these functions take the forms: 

(NUMBER X / (class) : (P X) ) 
“The number of X’s in (class) for which (P X) is true.” 

(AVERAGE X / (class) : (P X) ; (F X) ) 

“The average of the values of (F X) over the X’s in (class) for which 
(P X) is true.” 

(AVERAGE X / (class) : (P X) ) 

“The average value of X (a number) over the X’s in (class) for which 
(P X) is true.” 

(MAXIMUM X / (class) : (P X) ) 

“The maximum value of X in the set of X’s in (class) for which (P X) 
is true.” 

(MINIMUM X / (class) : (P X) ) 

“The minimum value of X in the set of X’s in (class) for which (P X) 
is true. ” 

The proposition (P X) in each of these cases has to be taken as an 
intensional entity rather than a referring expression, since it must be 
repeatedly evaluated for different values of X. 
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Opaque context functions are also defined for forming the intensional 
descriptions of sets and the intensional union of intensionally defined 
sets: 

(SETOF X / (class) : (P X) ) 

“The set of X’s in (class) for which (P X) is true.” 

(UNION X / (class) : (P X) ; ((setfn) X) ) 

“The union over the X’s in (class) for which (P X) is true of the sets 
generated by (( setfn) X). ” 

4.8 Restricted Class Quantification 

One of the major features of the quantifiers in the LUNAR MRL is 
the separation of the quantified expression into distinct structural parts: 
(1) the basic class over which quantification is to range, (2) a set of 
restrictions on that class, and (3) the main expression being quantified. 
There are a number of advantages of maintaining these distinctions, one 
of which is the uniformity of the interpretation procedure over different 
kinds of noun phrase determiners that it permits. For example, the de- 
terminers “some” and “every”, when translated into the more custom- 
ary logical representations, give different main connectives for the 
expression being quantified. That is, “every man is mortal” becomes 
(Ax)Man(x)+Mortal(x) while “some man is mortal” becomes 
(Ex)Man(x)&Mortal(x). With the LUNAR format, the choice of deter- 
miner affects only the choice of quantifier. 

Other advantages to this kind of quantifier are the facilitation of certain 
kinds of optimization operations on the MRL expressions, and the gen- 
eration of appropriate antecedents for various anaphoric expressions. 
Recently, Nash-Webber and Reiter (1977) have pointed out the necessity 
of making a distinction between the quantification class and the predicated 
expression if an MRL is to be adequate for handling verb phrase ellipsis 
and “one”-anaphora. 

4.9 Nonstandard Quantifiers 

Another advantage of the restricted class quantifier notation is the 
uniform treatment of a variety of nonstandard quantifiers. For example, 
LUNAR treats the determiner “the” in a singular noun phrase as a 
quantifier, selecting the unique object that satisfies its restriction (and 
complaining if the presupposition that there is a unique such object is 
not satisfied). This differs from the traditional representation of definite 
description by means of the iota operator, which constructs a complex 
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designator for a constituent rather than a governing quantifier. In the 
traditional notation, the sentence “The man I see is mortal,” would be 
represented something like 

MORTAL( i(x) : MAN(x) & SEE(1,x)). 

In the LUNAR MRL it would be 

(FOR THE X / MAN : (SEE I X) ; (MORTAL X)). 

Quantifiers such as “many” and “most,” whose meaning requires 
knowledge of the size of the class over which quantification ranges (as 
well as the size of the class for which the quantified proposition is true) 
can be adequately handled by this notation since the range of quantifi- 
cation is specifically mentioned. These quantifiers were not implemented 
in LUNAR, however. 

Among the nonstandard quantifiers handled by LUNAR are numerical 
determiners (both cardinal and ordinal) and comparative determiners. 
Ordinal quantifiers (“the third X such that P”) are handled by a special 
quantifier (ORDINAL n) that can be used in the (quant) slot of the 
quantifier form. In general this ordinal quantifier should take another 
parameter that names the ordering function to be used, or at least require 
a preferred ordering function to be implied by context. The ordering of 
the members of the class used by LUNAR is the order of their enumer- 
ation by the enumeration function that defines the class (see Section 5.2) .  

Numerical quantification and comparative quantification are handled 
with a general facility for applying numeric predicates to a parameter N 
in the FOR function that counts the number of successful members of 
the range of quantification that have been found. Examples are 
(GREATER N (number)), (EQUAL N (number)), or even (PRIME N )  
(i.e., N is a prime number). 

The interpretation of general numeric predicates as quantifiers is that 
if any number N satisfying the predicate can be found such that N 
members of the restricted class satisfy the quantified proposition (or 
successfully complete a quantified command), then the quantified prop- 
osition is true (or a quantified command is considered completed). In the 
implementation, the current value of N is tested as each successful 
member of the restricted class is found, until either the count N satisfies 
the numeric predicate or there are no more members in the class. 

The numeric predicate quantifier can be used directly to handle com- 
parative determiners such as “at least” and “more than,” and can be 
used in a negated quantification to handle “at most” and “fewer than.” 
The procedure for testing such quantifiers can return a value as  soon as 
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a sufficient number of the class have been found, without necessarily 
determining the exact number of successful members. The numerical 
determiner “exactly (n )”  is handled in LUNAR by the generalized count- 
ing function NUMBER embedded in an equality statement. (It could also 
be handled by a conjunction of “at least” and “not more than,” but that 
would not execute as efficiently.) 

The LUNAR MRL also permits a generic quantifier GEN, which is 
assigned to noun phrases with plural inflection and no determiner. Such 
noun phrases sometimes behave like universal quantification and some- 
times like existential quantification. In LUNAR, unless some higher 
operator indicates that it should be interpreted otherwise, a generic quan- 
tifier is evaluated exactly like EVERY. 

Examples of types of quantification in LUNAR are 

(FOR EVERY X / CLASS : (P X) ; (Q X)) 

“Every X in CLASS that satisfies P also satisfies Q.” 

(FOR SOME X / CLASS : (P X) ; (Q X)) 

“Some X in CLASS that satisfies P also satisfies Q.” 

(FOR GEN X / CLASS : (P X) ; (Q X)) 

“A generic X in CLASS that satisfies P will also satisfy Q.” 

(FOR THE X / CLASS : (P X) ; (Q X)) 
“The single X in CLASS that satisfies P also satisfies Q.” 

(FOR (ORDINAL 3) X / CLASS : (P X) ; (Q X)) 

“The third X in CLASS that satisfies P also satisfies Q.” 

(FOR (GREATER N 3) X / CLASS : (P X) ; (Q X)) 

“More than 3 X’s in CLASS that satisfy P also satisfy Q.” 

(FOR (EQUAL N 3) X / CLASS : (P X )  ; (Q X)) 

“At least 3 X’s in CLASS that satisfy P also satisfy Q.” 

(NOT (FOR (EQUAL N 3) X / CLASS : (P X) ; (Q X))) 

“Fewer than 3 X’s in CLASS satisfy P and also satisfy Q.” 

(EQUAL 3 (NUMBER X / CLASS : (P X) : (Q X) )) 

“Exactly 3 X’s in CLASS satisfy P and also satisfy Q.” 
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4.10 Functions and Classes 

Another of the attractive features of the LUNAR MRL is the way that 
quantification over classes, single and multiple valued functions, and the 
attachment of restrictive modifiers are all handled uniformly, both indi- 
vidually and in combination, by the quantification operators. Specifically, 
a noun phrase consisting of a function applied to arguments is represented 
in the same way as a noun phrase whose head is a class over which 
quantification is to range. For example “The departure time of flight 557 
is 3:OO” can be represented as 

(FOR THE X / (DEPARTURE-TIME FLIGHT-557) : T ; 
(EQUAL X 3 : 00)) 

(where T is the universally true proposition, signifying here that there 
are no further restrictions on the range of quantification). This permits 
exactly the same mechanisms for handling the various determiners and 
modifiers to apply to both functionally determined objects and quantifi- 
cation over classes. 

This uniformity of treatment becomes especially significant when the 
function is not single valued and when the class of values is being quan- 
tified over or restricted by additional modifiers as in 

(FOR EVERY X / (DATALINE S10046 OVERALL 5102) : 
T ; (PRINTOUT X)) 

and 

(FOR THE X / (DATALINE S10046 OVERALL S102) : 

where (DATALINE (sample) (phase) (constituent)) is the function used 
in LUNAR to enumerate measurements in its chemical analysis table 
and (REF* (table entry) (document)) is a relation between a measure- 
ment and the journal article it was reported in. 

(REF* X D70-181) ; (PRINTOUT X)) 

4.1 1 Unanticipated Requests 

The structure of the meaning representation language, when coupled 
with general techniques for semantic interpretation, enable the user to 
make very explicit requests with a wide range of diversity within a natural 
framework. As  a consequence of the modular composition of MRL 
expressions, it is possible for the user to combine the basic predicates 
and functions of the retrieval component in ways that were not specifi- 
cally anticipated by the system designer. For example, one can make 
requests such as “List the minerals”, “What are the major elements‘?’’, 
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“How many minerals are there?”, etc. Although these questions might 
not be sufficiently useful to merit special effort to handle them, they fall 
out of the mechanism for semantic interpretation in a natural way with 
no additional effort required. If the system knows how to enumerate the 
possible samples for one purpose, it can do so for other purposes as well. 
Furthermore, anything that the system can enumerate, it can count. 
Thus, the decomposition of the retrieval operations into basic units of 
quantifications, predicates, and functions provides a very flexible and 
powerful facility for expressing requests. 

5. The Semantics of the Notation 

5.1 Procedural Semantics 

As mentioned before, the semantic specification of a natural language 
requires not only a semantic notation for representing the meanings of 
sentences, but also a specification of the semantics of the notation. As 
discussed previously, this is done in LUNAR by relating the notation to 
procedures that can be executed. For each of the predicate names that 
can be used in specifying semantic representations, LUNAR requires a 
procedure or subroutine that will determine the truth of the predicate for 
given values of its arguments. Similarly, for each of the functions that 
can be used, there must be a procedure that computes the value of that 
function for given values of its arguments. Likewise, each of the class 
specifiers for the FOR function requires a subroutine that enumerates the 
members of the class. 

The FOR function itself is also defined by a subroutine, as are the 
logical operators AND, OR, and NOT, the general counting and aver- 
aging functions NUMBER and AVERAGE, and the basic command 
functions TEST and PRINTOUT. Thus any well-formed expression in 
the language is a composition of functions that have procedural defini- 
tions in the retrieval component and are therefore themselves well-de- 
fined procedures capable of execution on the data base. In the LUNAR 
system, the definition of all of these procedyes is done in LISP, and the 
notation of the meaning representation language is so chosen that its 
expressions are executable LISP programs. These function definitions 
and the data base on which they operate constitute the retrieval com- 
ponent of the system. 

5.2 Enumeration Functions 

One of the engineering features of the LUNAR retrieval component 
that makes the quantification operators both efficient and versatile is the 
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definition of quantification classes by means of enumeration functions. 
These are functions that compute one member of the class at a time and 
can be called repeatedly to obtain successive members. Enumeration 
functions take an enumeration index argument which is used as  a restart 
pointer to keep track of the state of the enumeration. Whenever FOR 
calls an enumeration function to obtain a member of a class, it gives it 
an enumeration index (initially T), and each time the enumeration func- 
tion returns a value, it also returns a new value of the index to be used 
as a restart pointer to get the next member. This pointer is frequently an 
inherent part of the computation and involves negligible overhead to 
construct. For example, in enumerating integers, the previous integer 
suffices, while in enumerating members of an existing list, the pointer to 
the rest of the list already exists. 

The enumeration function formulation of the classes used in quantifi- 
cation frees the FOR function from explicit dependence on the structure 
of the data base; the values returned by the enumeration function may 
be searched for in tables, computed dynamically, o r  merely successively 
accessed from a precomputed list. Enumeration functions also enable the 
quantifiers to operate on potentially infinite classes and on classes of 
objects that do not necessarily exist prior to the decision of the quantifier 
to enumerate them. For example, in an expression such as 

(FOR SOME X / INTEGER : (LESSP X 10) ; (PRIME X) ) 

(“some integer less than 10 is a prime”), a general enumeration procedure 
for integers can be used to construct successive integers by addition, 
without having to assume that all the integers of interest exist in the 
computer’s memory ahead of time. Thus, the treatment of this kind of 
quantification fits naturally within LUNAR’S general quantification 
mechanism without having to be treated as a special case. 

In the grammar information system application, an enumeration func- 
tion for paths computes representations for paths through the grammar, 
so that paths can be talked about even though there are no explicit 
entities in the internal grammar representation that correspond to paths. 
(See the discussion on “smart” quantifiers below for a further discussion 
of the problems of quantifying over such entities.) 

An enumeration function can indicate termination of the class in one 
of two ways: either by returning NIL, indicating that there are no more 
members, or by returning a value with a NIL restart pointer, indicating 
that the current value is the last one. This latter can save one extra call 
to the enumeration function if the information is available at the time the 
last value is returned (e.g., for single valued functions). This avoids what 
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would otherwise be an inefficiency in treating multiple- and single-valued 
functions the same way. 

In LUNAR, a general purpose enumeration function SEQ can be used 
to enumerate any precomputed list, and a similar function SEQL can be 
used to enumerate singletons. For example, 

(FOR EVERY XI / (SEQ TYPECS) : T ; (PRINTOUT XI)) 

is an expression that will printout the sample numbers for all of the 
samples that are type C rocks. 

Functionally determined objects and classes, as  well as  fixed classes, 
are implemented as enumeration functions, taking an enumeration index 
as well as their other arguments and computing successive -members of 
their class one at a time. In particular, intensional operators such as 
AVERAGE, NUMBER, SETOF, and UNION are defined as  enumera- 
tion functions and also use enumeration functions for their class argu- 
ments. Thus quantification over classes, computation of single-valued 
functions, and quantification over the values of multiple-valued functions 
are all handled uniformly, without special distinctions having to be made. 

5.3 Quantified Commands 

As mentioned earlier, both propositions and commands can be quan- 
tified. Thus one can issue commands such as 
(FOR (EQ N 5 )  X / SAMPLES : (CONTAIN X SI02) ; (PRINTOUT X)) 
(“Print out five samples that contain silicon”). The basic commands in 
such expressions are to be iterated according to the specifications of the 
quantifier. However, it is possible for such commands to fail due to a 
violation of presuppositions or of necessary conditons. For example, in 
the above case, there might not be as  many as five samples that contain 
silicon. In order for the system to be aware of such cases, each command 
in the system is defined to return a value that is non-null if the command 
has been successfully executed and NIL otherwise. Given this conven- 
tion, the FOR operator will automatically return T if such an iterated 
command has been successfully completed and NIL otherwise. 

There are other variations of this technique that could be useful but 
were not implemented in LUNAR, such as returning comments when a 
command failed indicating the kind of failure. In LUNAR, such com- 
ments were sometimes printed to the user directly by the procedure that 
failed, but the system itself had no opportunity to “see” those comments 
and take some action of its own in response to them (such as trying some 
other way to achieve the same end). 
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In LUNAR, interpretations of commands are given directly to the 
retrieval component for evaluation, although in a more intelligent system, 
as in  humans, the decision to carry out a command once it is understood 
would not necessa:ily automatically follow, 

6. Semantic Interpretation 

Having now specified the notation in which the meanings of English 
sentences are to be represented and specifying the meanings of expres- 
sions in that notation, we are now left with the specification of the 
process whereby meanings are assigned to sentences. This process is 
referred to as semantic interpretation, and in LUNAR it is driven by a 
set of formal semantic interpretation rules. For example, the interpreta- 
tion of the sentence “S10046 contains silicon,” to which the parser would 
assign the syntactic structure 

S DCL 
NP NPR S10046 
AUX TNS PRESENT 
V P  VCONTAIN 

NP NPR SILICON 

is determined by a rule that applies to a sentence when the subject is a 
sample, the object is a chemical element, oxide, or isotope, and the verb 
is “have” or “contain.” This rule specifies that such a sentence is to be 
interpreted as an instance of the schema (CONTAIN x y),  where x is to 
be replaced by the interpretation of the subject noun phrase of the sen- 
tence, and y is to be replaced by the interpretation of the object. 

This information about conditions on possible arguments and substi- 
tutions of subordinate interpretations into “slots” in the schema is rep- 
resented in LUNAR by means of the pattern + action rule 

[ S: CONTAIN 
(S.NP (MEM I SAMPLE)) 
(S .V (OR (EQU 1 HAVE) 

(S.OBJ (MEM 1 (ELEMENT OXIDE ISOTOPE))) 
+(QUOTE (CONTAIN (# 1 1 )  (#  3 1))) I. 

The name of the rule is S:CONTAIN. The left-hand side, or pattern 
part, of the rule consists of three templates that match fragments of 
syntactic structure. The first template requires that the sentence being 

(EQU 1 CONTAIN)) 



NATURAL LANGUAGE QUESTION ANSWERING 25 

interpreted have a subject noun phrase that is a member of the semantic 
class SAMPLE; the second requires that the verb be either “have” or 
“contain;” and the third requires a direct object that is either a chemical 
element, an oxide, or an isotope. 

The right-hand side, or action part, of the rule follows the right arrow 
and specifies that the interpretation of this node is to be formed by 
inserting the interpretations of the subject and object constituents into 
the schema (CONTAIN (# 1 1) (# 3 l)), where the expressions (# m n) 
mark the “slots” in the schema where subordinate interpretation are to 
be inserted. The detailed structure of such rules is described in Section 
6.3. (Note that the predicate CONTAIN is the name of a procedure in 
the retrieval component, and it is only by the “accident” of mnemonic 
design that its name happens to be the same as the English word “con- 
tain” in the sentence that we have interpreted.) 

The process of semantic interpretation can conveniently be thought of 
as a process that applies to parse trees produced by a parser to assign 
semantic interpretations to nodes in the tree. In LUNAR and the other 
systems above, except for TRIPSYS, this is how the interpretations are 
produced. (In TRIPSYS, they are produced directly by the parser without 
an intermediate syntax tree representation.) The basic interpretation 
process is a recursive procedure that assigns an interpretation to a node 
of the tree as a function of its syntactic structure and the interpretations 
of its constituents. 

The interpretations of complex constituents are thus built up modularly 
by a recursive process that determines the interpretation of a node by 
inserting the interpretations of certain constituent nodes into open slots 
in a schema. The schema to be used is determined by rules that look at 
a limited portion of the tree. At the bottom level of the tree (i.e., the 
leaves of the tree), the interpretation schemata are literal representations 
without open sbts ,  specifying the appropriate elementary interpretations 
of basic atomic constituents (e.g., proper names). 

In LUNAR, the semantic interpretation procedure is implemented in 
such a way that the interpretation of nodes can be initiated in any order. 
If the interpretation of a node requires the interpretation of a constituent 
that has not yet been interpreted, then the interpretation of that constit- 
uent is performed before that of the higher node is completed. Thus, it 
is possible to perform the entire semantic interpretation by calling for the 
interpretation of the top node (the sentence as a whole). This is the 
normal mode in which the interpreter is operated in LUNAR. I will 
discuss later (Sections 11.3 and 11.4) some experiments in which this 
mechanism is used for “bottom-up” interpretation. 
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6.1 Complications Due to Quantifiers 

In the above example, the interpretation of the sentence is obtained by 
inserting the interpretations of the proper noun phrases “S10046” and 
“silicon” (in LUNAR these are “S10046” and “SI02,” respectively) 
into the open slots of the right-hand side schema to obtain 

(CONTAIN S10046 SI02). 

When faced with the possibility of a quantified noun phrase, however, 
the problem becomes somewhat more complex. If the initial sentence were 
“Every sample contains silicon,” then one would like to produce the 
interpretation 

(FOR EVERY X / SAMPLE ; (CONTAIN X SI02)). 

That is, one would like to create a variable to fill the “container” slot of 
the schema for the main verb, and then generate a quantifier governing 
that variable to be attached above the predicate CONTAIN. As we shall 
see, the LUNAR semantic interpretation system specifically provides for 
the generation and appropriate attachment of such quantifiers. 

6.2 Problems with an Alternative Approach 

Because of the complications discussed above, one might ask whether 
there is some other way to handle quantification without generating 
quantifiers that are extracted from their noun phrase and attached as 
dominant operators governing the clause in which the original noun 
phrase was embedded. One might, instead, attempt to interpret the quan- 
tified noun phrase as some kind of a set that the verb of the clause takes 
as its argument, and require the definition of the verb to include the 
iteration of its basic predicate over the members of the class. For ex- 
ample, one might want a representation for the above example something 
like 

(CONTAIN (SET X / SAMPLE : T) SI02) 

with the predicate CONTAIN defined to check whether its first argument 
is a set and if so, check each of the members of that set. 

However, if one were to take this approach, some way would be 
needed to distinguish giving CONTAIN a set argument over which it 
should do universal quantification from one in which it should do exis- 
tential quantification. One would similarly have to be able to give it 
arguments for the various nonstandard quantifiers discussed above, such 
as numerical quantifiers and quantifiers like “most.” Moreover, the same 
thing would have to be done separately for the second argument to 
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CONTAIN as well as the first (i.e., the chemical element as well as the 
sample), and one would have to make sure that all combinations of 
quantifiers in the two argument positions worked correctly. Essentially 
one would have to duplicate the entire quantificational mechanism dis- 
cussed above as part of the defining procedure for the meaning of the 
predicate CONTAIN. Moreover, one would then have to duplicate this 
code separately for each other predicate and command in the system. 
Even if one managed to share most of the code by packaging it as 
subroutines, this is still an inelegant way of handling the problem. 

Even if one went to the trouble just outlined, there are still logical 
inadequacies, since there is no way with the proposed method to specify 
the differences in meaning that correspond to the different relative scopes 
of two quantifiers (e.g., “Every sample contains some element” versus 
“There is some element that every sample contains”). Likewise, there 
is no mechanism to indicate the relative scopes of quantifiers and sen- 
tential operators such as negation (“Not every sample contains silicon” 
versus “Every sample contains no silicon”). It appears, therefore, that 
treating quantifiers effectively as higher operators is essential to correct 
interpretation in general. 

6.3 The Structure of Semantic Rules 

As discussed above, in determining the meaning of a construction, two 
types of information are used: syntactic information about sentence con- 
struction and semantic information about constituents. For example, in 
interpreting the above example, it is both the syntactic structure of the 
sentence (subject = S10046; verb = “contain;” object = silicon) plus the 
semantic fact that S10046 is a sample and silicon is a chemical element 
that determine the interpretation. Syntactic information about a construc- 
tion is tested by matching tree fragments such as those indicated below 
against the mode being interpreted: 

S.NP = S NP (1) (subject of a sentence) 
s.v 
S.OBJ 
S.PP = S VP PP PREP (1) (preposition and object 

NP.ADJ = NP ADJ (2) (adjective modifying a noun phrase). 

= S VP V (1)  
= S VP NP (1) 

(main verb of a sentence) 
(direct object of a sentence) 

NP (2) modifying a verb phrase) 

Fragment S.NP matches a sentence if it has a subject and also associates 
the number 1 with the subject noun phrase. S.PP matches a sentence that 
contains a prepositional phrase modifying the verb phrase and assaciates 
the numbers 1 and 2 with the preposition and its object, respectively. 
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The numbered nodes can be referred to in the left-hand sides of rules for 
checking semantic conditions, and they are used in the right-hand sides 
for specifying the interpretation of the construction. These tree structure 
fragments can be named mnemonically as above for readability. 

The basic element of the left-hand side of a rule is a template consisting 
of tree fragments plus additional semantic conditions on the numbered 
nodes of the fragment. For example, the template (S.NP (MEM 1 SAM- 
PLE)) matches a sentence if its subject is semantically marked as a 
sample. The pattern part of a rule consists of a sequence of templates, 
and the action of the rule specifies how the interpretation of the sentence 
is to be constructed from the interpretations of the nodes that match the 
numbered nodes of the templates. 

Occasionally, some of the elements that are required to construct an 
interpretation may be found in one of several alternative places in a 
construction. For example, the constituent to be measured in an analysis 
can occur either as a prenomial adjective (“a silicon analysis”) or as a 
post-nominal prepositional phrase (“an analysis of silicon”). To handle 
this case, basic templates corresponding to the alternative ways the 
necessary element can be found can be grouped together with an OR 
operator to form a disjunctive template that is satisfied if any of its 
disjunct templates are. For example, 

(OR (NP.ADJ (MEM 2 ELEMENT)) 
(NP.PP (AND (EQU 1 OF) 

Also occasionally, two rules will be distinguished by the fact that one 
applies when a given constituent is present and the other will require it 
to be absent. In order to write the second rule so that it will not match 
in circumstances where it is not intended, a basic template can be embed- 
ded in a negation operator NOT to produce a negated template that is 
satisfied if its embedded template fails to match and is not satisfied when 
its embedded template succeeds. For example, 

(NOT (NP.ADJ (EQU 2 MODAL))). 

(MEM 2 ELEMENT))). 

In general, the left-hand side of a rule consists of a sequence of tem- 
plates (basic, disjunctive, or negated). 

6.3.1 Right-Hand Sides 

The right-hand sides (or actions) of semantic rules are schemata into 
which the interpretations of embedded constituents are inserted before 
the resulting form is evaluated to give a semantic interpretation. The 
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places, or “slots,” in the right-hand sides where subordinate interpreta- 
tions are to be inserted are indicated by expressions called REFS, which 
begin with the atom # and contain one or two numbers and an optional 
“TYPEFLAG.” The numbers indicate the node in the tree whose inter- 
pretation is to be inserted by naming first the sequence number of a 
template of the rule, and then the number of the corresponding node in 
the tree fragment of that template. Thus the reference (# 2 1) represents 
the interpretation of the node that matches node 1 of the 2nd template of 
the rule. In addition, the single number 0 can also be used to reference 
the current node, as in (# 0 TYPEFLAG). 

The TYPEFLAG element, if present, indicates how the subordinate 
node is to be interpreted. For example, in LUNAR there is a distinction 
between interpreting a node normally and interpreting it as a topic de- 
scription. Thus (# 0 TOPIC) represents the interpretation of the current 
node as a topic description. There are a variety of types of interpretation 
used for various purposes in the rules of the system. The absence of a 
specific TYPEFLAG in a REF indicates that the interpretation is to be 
done in the normal mode for the type of node that it matches. 

6.3.2 Right-Hand Side Evaluation 

In many cases, the semantic interpretation to be attached to a node 
can be constructed by merely inserting the appropriate constituent inter- 
pretations into the open slots in a fixed schema. However, occasionally, 
more than this is required and some procedure needs to be executed to 
modify or transform the resulting instantiated schema. To provide for 
this, the semantic interpreter treats right-hand sides of rules as expres- 
sions to be evaluated to determine the appropriate interpretation. For 
rules in which the desired final form can be given literally, the right-hand 
side schema is embedded in the operator QUOTE which simply returns 
its argument unchanged. This is the case in the example above. In special 
cases, right-hand side operators can do fairly complex things, such as 
searching a discourse directory for antecedents for anaphoric expressions 
and computing intensional unions of sets. In the usual case, however, 
the operator is either QUOTE or one of the two operators PRED and 
QUANT that handle quantifier passing (discussed below). 

6.4 Relationship of Rules to Syntax 

.In many programming languages and some attempts to specify natural 
language semantics, semantic rules are paired directly with syntactic 
phrase structure rules so that a single compact pairing specifies both the 
syntactic structure of a constituent and its interpretation. This type of 
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specification is clean and straightforward and works well for artificial 
languages that can be defined by context-free or almost context-free 
grammars. For interpreting natural language sentences, whose structure 
is less isomorphic to the kind of logical meaning representation that one 
would like to derive, it is less convenient, although not impossible. 
Specifically, with the more complex grammars for natural language, e.g., 
ATN’s and transformational grammars, the simple notion of a syntactic 
rule with which to pair a semantic rule becomes less clear. Consequently, 
the rules in the LUNAR system are not paired with the syntactic rules, 
nor are they constrained to look only at the immediate constituents of a 
phrase. In general they can look arbitrarily far down into the phrase they 
are interpreting, picking up interpretations of subordinate constituents at 
any level, and looking at various syntactic aspects of the structure they 
are interpreting, as well as the semantic interpretations of constituents. 
The rules are invoked not by virtue of applying a given syntactic rule, 
but by means of rule indexing strategies described below. 

6.5 Organization of the Semantic Interpreter 

The overall operation of the semantic interpreter is as follows: A top 
level routine calls the recursive function INTERP looking at the top level 
of the parse tree. Thereafter, INTERP attempts to match semantic rules 
against the specified node of the tree, and the right-hand sides of matching 
rules specify the interpretation to be given to the node. The possibility 
of semantic ambiguity is recognized, and therefore the routine lNTERP 
produces a list of possible interpretations (usually a singleton, however). 
Each interpretation consists of two parts: a node interpretation (called 
the SEM of the node) and a quantifier “collar” (called the QUANT of 
the node). The QUANT is a schema for higher operators (such as quan- 
tification) that is to dominate any interpretation in which the SEM is 
inserted (used for quantifier passing-see Section 6.7). Thus the result of 
a call to INTERP for a given node P is a list of SEM-QUANT pairs, one 
for each possible interpretation of the node. 

6.5.7 Context-Dependent Interpretation 

The function INTERP takes two arguments-the construction to be 
interpreted and a TYPEFLAG that indicates how to interpret it. The 
TYPEFLAG mechanism is intended to allow a constituent to be inter- 
preted differently depending on the higher level structure within which 
it is embedded. The TYPEFLAG permits a higher level schema to pass 
down information to indicate how it wants a constituent interpreted. For 
example, some verbs can specify that they want a noun phrase interpreted 
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as a set rather than as a quantification over individuals. The TYPEFLAG 
mechanisms is also used to control the successive phases of interpretation 
of noun phrases and clauses (discussed below). 

When interpreting a node, INTERP first calls a function HEAD to 
determine the head of the construction and then calls a function RULES 
to determine the list of semantic rules to be used (which depends, in 
general, on the type of node, its head word, and the value of TYPE- 
FLAG). It then dispatches control to a routine MATCHER to try to 
match the rules. If no interpretations are found, then, depending on the 
TYPEFLAG and various mode settings, INTERP either returns a default 
interpretation T, goes into a break with a comment that the node is 
uninterpretable (permitting a systems programmer to debug rules), or 
returns NIL indicating that the node has no interpretations for the indi- 
cated TYPEFLAG. 

6.5.2 Phased Interpretation 

In general, there are two types of constituents in a sentence that 
receive interpretations-clauses and noun phrases. The former receive 
interpretations that are usually predications or commands, while the 
latter are usually designators. The interpretation of these two different 
kinds of phrase are slightly different, but also remarkably similar. In each 
case there is a governing “head” word; the verb in the case of a clause, 
and the head noun in the case of the noun phrase. The interpretation of 
a phrase is principally determined by the head word (noun or verb) of 
the construction. However, there are also other parts of a construction 
that determine aspects of its interpretation independent of the head word. 
These in turn break down into two further classes: (1) modifying phrases 
(which themselves have dominating head words) that augment or alter 
meaning of the head, and (2) function words that determine governing 
operators of the interpretation that are independent of the head word and 
its modifiers. In the case of clauses, these latter include the interpretation 
of tense and aspect and various qualifying operators such as negative 
particles. In the case of noun phrases, these include the interpretation of 
articles and quantifiers and the inflected case and number of the head 
noun. 

As a consequence of these distinctions, the semantic interpretation of 
a construction generally consists of three kinds of operations: determining 
any governing operators that are independent of the head word, deter- 
mining the basic interpretation of the head, and interpreting any modifiers 
that may be present. In LUNAR, these three kinds of interpretation are 
governed by three different classes of rules that operate in three phases. 
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The phases are controlled by the rules themselves by using multiple calls 
to the interpreter with different TYPEFLAGS. 

The above description is not the only way such phasing could be 
achieved. For example, it would be possible to gain the same phasing of 
interpretation by virtue of the structures assigned to the input by the 
parser (see Section 11.2) or by embedding the phasing in the control 
structure of the interpreter. In the original flight schedules and grammar 
information implementations, this phasing was embedded in the control 
structure of the interpreter. Placing the phasing under the control of the 
rules themselves in LUNAR provided more flexibility. In  TRIPSYS, the 
equivalent of such phasing is integrated, along with the semantic inter- 
pretation, into the parsing process. 

In general, the interpretation of a construction is initially called for 
with TYPEFLAG NIL. This first interpretation may in turn involve 
successive calls for interpretation of the same node with other TYPE- 
FLAGS to obtain subsequent phases of interpretation. For example, 
clauses are initially interpreted with TYPEFLAG NIL, and the rules 
invoked are a general set of rules called PRERULES that look for ne- 
gative articles, tense marking, conjunctions, etc., to determine any gov- 
erning operators that should surround the interpretation of the verb. 
Whichever of these rules matches will then call for another interpretation 
of the same construction with an appropriate TYPEFLAG. The basic 
interpretation of the verb is done by a call with TYPEFLAG SRULES, 
which invokes a set of rules stored on the property list of the verb (or 
reachable from the entry for that verb by chaining up a generalization 
hierarchy). For example, in interpreting the sentence “S10046 doesn’t 
contain silicon”, the initial PRERULE PR-NEG matches with a right- 
hand side 

(PRED (NOT (# 0 SRULES))). 

The SRULE S:CONTAIN discussed above then matches, producing 
eventually (CONTAIN S10046 SIOZ), which is then embedded in the PR- 
NEG schema to produce the final interpretation 

(NOT (CONTAIN S10046 S102)). 

Ordinary noun phrases are usually interpreted by an initial phase that 
interprets the determiner and number, a second phase that interprets the 
head noun and any arguments that it may take (Lea, as a function), and 
a third phase that interprets other adjectival and prepositional phrase 
modifiers and relative clauses. 
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6.5.3 Proper Nouns and Mass Terms 

In addition to the rules discussed above for ordinary noun phrases, 
there are two special classes of noun phrases-proper nouns and mass 
terms-that have their own rules. Proper nouns are the direct names of 
individuals in the data base. Their identifiers in the data base, which are 
not necessarily identical to their normal English orthography, are indi- 
cated in the dictionary entry for the English form. Mass terms are the 
names of substances like silicon and hydrogen. Proper nouns are repre- 
sented in the LUNAR syntactic representations as special cases of noun 
phrases by a rule equivalent to NP + NPR, while mass terms are rep- 
resented as ordinary noun phrases with determiner NIL and number SG. 

In general, the interpretation of mass terms requires a special treatment 
of quantifiers, similar to but different from the ordinary quantifiers that 
deal with count nouns (e.g., “some silicon” means an amount of stuff, 
while “some sample” means an individual sample). In the LUNAR 
system, however, mass terms are used only in a few specialized senses 
in which they are almost equivalent to proper nouns naming a substance. 

6.6 Organization of Rules 

As mentioned above, the semantic rules for interpreting sentences are 
usually governed by the verb of the sentence. That is, out of the entire 
set of semantic rules, only a relatively small number of them can possibly 
apply to a given sentence because of the verb mentioned in the rule. 
Similarly, the rules that interpret noun phrases are governed by the head 
noun of the noun phrase. For this reason, most semantic rules in LUNAR 
are indexed according to the heads of the constructions to which they 
could apply, and recorded in the dictionary entry for the head words. 
Specifically, associated with each verb is a set of “SRULES” for inter- 
preting that verb in various contexts, and associated with each noun is 
a set of ‘“RULES” for interpreting various occurrences of that noun. 
In addition, associated with each noun are a set of “RRULES” for 
interpreting various restrictive modifiers that may be applied to that 
noun. Each rule essentially characterizes a syntactichemantic environ- 
ment in which a word can occur, and specifies its interpretation in that 
environment. The templates of a rule thus describe the necessary and 
sufficient constituents and semantic restrictions for a word to be mean- 
ingful. 

In addition to indexing rules directly in the dictionary entry for a given 
word, certain rules that apply generally to a class of words are indexed 
in an inheritance hierarchy (frequently called an “is-a” hierarchy in 
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semantic network notations) so that they can be recorded once at the 
appropriate level of generality. Specifically, each work in the dictionary 
has a property called MARKERS which contains a list of classes of 
which it is a member (or subclass), i.e., classes with which this word has 
an “is-a” relationship. Each of these classes also has a dictionary entry 
that may contain SRULES, NRULES, and RRULES. The set of rules 
used by the interpreter for any given phrase is obtained by scanning up 
these chains of inheritance and gathering up the rules that are found. 
These accesses are quite shallow in LUNAR but would be used more 
heavily in a less limited topic domain. 

In situations in which the set of rules does not depend on the head of 
the construction, the rules to be used are taken from a global list deter- 
mined by the value of TYPEFLAG and the type of the constituent being 
interpreted. For example, in interpreting the determiner structure of a 
noun phrase, a global list of DRULES is used. 

6.6.1 Rule Trees 

Whether indexed by the head words of cons ructions or aken from 
global lists, rules to be tried are organized into a tree structure that can 
make rule matching conditional on the success or failure of previous 
rules. A rule tree specifies the order in which rules are to be tried and 
after each rule indicates whether a different tree of rules is to be tried 
next, depending on the success or failure of previous rules. The format 
for a rule tree is basically a list of rules (or rule groups-see multiple 
matches below) in the order they are to be tried. However, after any 
given element in this list, a new rule tree can be inserted to be used if 
any of the rules preceding it have succeeded. If no rules preceding it 
have succeeded, then the inserted tree is skipped and rules continue to 
be taken from the rules that follow it in the list. For example, the tree (R1 
R2 (R4 R5) R3 R4 R5) indicates that R1 and R2 are to be tried in that 
order and if either of them succeed, the subsequent rules to be tried are 
R4 and R5. If neither R1 nor R2 succeed, then the remaining list R3, R4, 
R5 is to be tried next. This example illustrates how a rule tree can be 
used to skip around rules that are to be omitted if previous rules have 
succeeded. 

The most usual cases of rule trees in LUNAR are simple lists (i.e., no 
branching in the tree), and lists of rules with inserted empty trees (i-e., 
the empty list NIL) serving as “barriers” to stop the attempted matching 
of rules once a successful rule has been found. 
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6.6.2 Multiple Matches 

Since the templates of a rule may match a node in several ways, and 
since several rules may simultaneously match a single node, it is neces- 
sary to indicate how the interpretation of a node is to be constructed in 
such a case. To provide this information, the lists of rules at each level 
of a rule tree can be organized into groups, with each group indicating 
how (or whether) simultaneous matches by different rules are to be 
combined. The format of a rule group is a list of rules (or other groups) 
preceded by an operator specifying the mode for combining simultaneous 
matches. Outside the scopes of rule groups, the mode to be used is 
specified by a default value determined by TYPEFLAG and the type of 
node being interpreted. Possible modes are AND (which combines mul- 
tiple matches with an AND, i.e., treats multiple matches as finding 
different parts of a single conjoined meaning), OR (which combines mul- 
tiple matches with an OR), SPLIT (which keeps multiple matches sepa- 
rate as semantic ambiguities), and FAIL (which prohibits multiple 
matches, i.e., complains if it finds any). 

To illustrate the behavior of rule groups in rule trees, a rule list of the 
form (A B NIL C (OR D E)) with default mode AND indicates that if 
either of the rules A or B is successful, then no further matches are tried 
(NIL is a barrier); otherwise, rules C, D, and E are tried. If both D and 
E match, then the results are OR’ed together, and if C matches together 
with D or E or both, it is AND’ed to the results of the OR group. 

The modes (AND, OR, SPLIT, and FAIL) also apply to multiple 
matches of a single rule. A rule may either specify the mode for multiple 
matches as its first element prior to the list of templates, or else it will 
be governed by the rule group or default mode setting at the time it is 
matched. 

6.7 The Generation of Quantifiers 

As mentioned above, the LUNAR interpretation system specifically 
provides for the generation and appropriate attachment of quantifiers 
governing the interpretations it produces. Central to this capability is the 
division of the interpretation of a constituent into two parts: a SEM that 
is to be inserted into the appropriate slot of the schema for some higher 
constituent, and a QUANT that serves as a ‘‘collar’’ of higher operators 
that is to be passed up to some higher level of the tree (around which the 
collar will be “worn”). A quantifier to be attached to some higher con- 
stituent is represented as a schema, which itself contains a slot into which 
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the interpretation of that higher constituent is to be inserted. This slot 
(the “hole” in the collar) is indicated by a marker DLT. 

In the unquantified example sentence considered in Section 6.1, the 
SEM of the subject noun phrase is simply S10046, and the QUANT is 
the “empty” collar DLT. The quantifier schema in the second example 
would be represented as 

(FOR EVERY X / SAMPLE ; DLT). 

6.7.1 Steps in Interpretation 

The general procedure for interpreting a construction is 

a) Match an interpretation rule against the construction, subject to 
the control of the rule tree. 

b) If it matches, then determine from the right-hand side of the rule 
the set of constituent nodes that need to be interpreted. 

c) Call for the interpretation of all of the constituents required, as- 
sociate their SEMs with the slots in the schema that they are to fill, and 
gather up all of the QUANTs that are generated by those interpretations. 
Call a function SORTQUANT to determine the order in which those 
quantifiers (if there are several) should be nested. 

Depending on an operator in the right-hand side of rule, either 
attach the quantifiers so generated around the outside of the current 
schema, or pass them further up the tree as the QUANT of the resulting 
interpretation. 

If multiple matches are to be combined with an AND or OR, it is 
their SEMs that are so combined. Their QUANTs are nested one inside 
the other to produce the QUANT of the result. 

d) 

e) 

6.7.2 Quantifier Passing Operators 

There are three principal operators for use in the right-hand sides of 
rules to determine the behavior of quantifier passing up the tree. These 
are the operators PRED, QUOTE, and QUANT. The first indicates 
that the schema it contains is a predication that will accept quantifiers 
from below; it causes any quantifiers that arise from constituent inter- 
pretations to be attached around the current schema to become part of 
the resulting SEM. The QUANT associated with such an interpretation 
will be the empty QUANT DLT. The operator QUANT, on the other 
hand, indicates that the schema it contains is itself a quantifier schema, 
and that the result of its instantiation is to be passed up the tree (together 
with other quantifiers that may have resulted from constituent interpre- 
tations) as the QUANT of the interpretation. The SEM associated with 
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such an interpretation is the variable name that is being governed by the 
quantifier. The operator QUOTE is used around a schema that is trans- 
parent to quantifier passing, so that any quantifiers that accumulate from 
constituent interpretations are simply aggregated together and passed on 
up the tree as the QUANT of the interpretation. The SEM of such an 
interpretation is simply the instantiated schema inside the QUOTE. 

In the LUNAR implementation, a function SEMSUB, which substi- 
tutes the SEMs of lower interpretations into the right-hand sides of rules, 
maintains a variable QUANT to accumulate the nesting of quantifiers 
returned from the lower interpretations. Then, after making the substi- 
tutions, the right-hand side of the rule is evaluated to determine the SEM- 
QUANT pair to be returned. The result of the evaluation is the desired 
SEM of the pair, and the value of QUANT (which may have been 
changed as a side effect of the evaluation) is the QUANT of the pair. 
The operators PRED and QUANT in the right-hand sides of rules ma- 
nipulate the variable QUANT to grab and insert quantifiers. 

7. Problems of Interpretation 

7.1 The Order of Quantifier Nesting 

In the general quantification schema 

(FOR (quant) X / (class) : (p X) ; (q X) ) 

both the expressions (p X) and (q X) can themselves be quantified expres- 
sions. Sentences containing several quantified noun phrases result in 
expressions with a nesting of quantifiers dominating the interpretation of 
the main clause. For example, the sentence “Every sample contains 
some element” has a representation 

(FOR EVERY X / SAMPLE ; 
(FOR SOME Y / ELEMENT ; 

(CONTAIN X Y) ) ). 

Alternative interpretations of a sentence corresponding to different 
orderings of the quantifiers correspond to different relative nestings of 
the quantifier operations. For example, the above sentence has an un- 
likely interpretation in which there is a particular element that is con- 
tained in every sample. The representation of this interpretation is 

(FOR SOME Y / ELEMENT ; 
(FOR EVERY X / SAMPLE ; 

(CONTAIN X Y) ) ). 
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Thus, in interpreting a sentence, it is necessary to decide the appropriate 
order of nesting of quantifiers to be used. In general, this ordering is the 
left-to-right order of occurrence of the quantifiers in the sentence, but 
this is not universally so (for example, when a function is applied to a 
quantified noun phrase-see functional nesting below). In situations 
where the order of quantifiers is not otherwise determined, LUNAR 
assumes the left-to-right order of occurrence in the sentence. 

7.2 Interaction of Negations with Quantifiers 

The construction of an interpretation system that will handle sentences 
containing single instances of a quantification or simple negation without 
quantification is not difficult. What is difficult is to make it correctly 
handle sentences containing arbitrary combinations of quantifiers and 
negatives. The interpretation mechanism of LUNAR handles such con- 
structions fairly well. Consider the sentence “Every sample does not 
contain silicon.” This sentence is potentially ambiguous between two 
interpretations: 

(NOT (FOR EVERY X / SAMPLE ; (CONTAIN X SI02))) 

(FOR EVERY X / SAMPLE ; (NOT (CONTAIN X SI02))). 

The difference lies in the relative scopes of the quantifer and the negative. 
One interpretation of the above sentence is handled in LUNAR by the 

interaction of the rules already presented. The interpretation of the PRE- 
RULE PR-NEG, discussed in Section 6.5.2, has the right-hand side 
(PRED (NOT (# 0 SRULES))), whose governing operator indicates that 
it grabs quantifiers from below. The interpretation of the noun phrase 
“every sample” produces the quantifier “collar”: 

(FOR EVERY X / SAMPLE : T ; DLT) 

which is passed up as the QUANT together with the SEM X. The right- 
hand side of S:CONTAIN is embedded in the operator QUOTE, which 
is transparent to quantifiers, producing the SEM (CONTAIN X SI02) 
and passing on the same QUANT. The top level rule PR-NEG now 
executes its instantiated right-hand side: 

(PRED (NOT (CONTAIN X SI02))) 

and 

which grabs the quantifier to produce the interpretation: 

(FOR EVERY X / SAMPLE : T ; (NOT CONTAIN X SI02))). 

The alternative interpretation of the above sentence can be obtained 
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by an alternative PRERULE for sentential negatives whose right-hand 
side is 

(BUILDQ (NOT #) (PRED (# 0 SRULES))) 

where BUILDQ is an operator whose first argument is a literal schema 
into which it inserts the values of its remaining arguments. In this case, 
the PRED expression produces 

(FOR EVERY X / SAMPLE : T ; (CONTAIN X SI02)) 

and the BUILDQ produces 

(NOT (FOR EVERY X / SAMPLE : T ; (CONTAIN X SI02))). 

If these two negative rules both existed in the list PRERULES, then 
the LUNAR interpreter when interpreting a negative sentence would find 
them both and would produce both interpretations. In the case where no 
quantifier is returned by the subordinate SRULES interpretation, then 
both rules would produce the same interpretation and the duplicate could 
be eliminated. In the case where a quantifier is returned, then the two 
interpretations would be different and a genuine ambiguity would have 
been found, resulting in a request by the system to the user to indicate 
which of the two interpretations he intended. 

However, if one decides to legislate that only one of the two possible 
scope choices should be perceived by the system, then only the corre- 
sponding rule for negation should be included in the PRERULES list. 
This is the choice that was taken in the demonstration LUNAR system. 
Since the interpretation of the negative operator outside the scope of the 
quantifier can be unambiguously expressed using locutions such as “Not 
every sample contains silicon,” LUNAR’S rules treat sentential negation 
as falling inside any quantifiers (as expressed by the PR-NEG rule dis- 
cussed previously). Rules for interpreting determiners such as “not 
every” can easily be written to produce quantifier expressions such as 

(NOT (FOR EVERY X / (class) ; DLT)) 

to give interpretations in which the negative operator is outermost. 

7.3 Functional Nesting and Quantifier Reversal 

As previously mentioned, an interesting example of quantifier nesting 
occurs when an argument to a function is quantified. As an example, 
consider the flight schedules request, “List the departure times from 
Boston of every American Airlines flight that goes from Boston to Chi- 
cago.” This sentence has a bizarre interpretation in which there is one 
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time at which every American Airlines flight from Boston to Chicago 
departs. However, the normal interpretation requires taking the subor- 
dinate quantifier “every flight” and raising it above the quantifier of the 
higher noun phrase “the departure time.” Such nesting of quantifiers is 
required when the range of quantification of one of them (in this case, 
the departure times) contains a variable governed by the other (in this 
case, the flights). 

In the logical representation of the meaning of such sentences, the 
higher quantifier must be the one that governs the variable on which the 
other depends. This logical dependency is exactly the reversal of the 
“syntactic dependency” in the parse tree, where the argument to the 
function is contained within (i.e., “dependent” on) the phrase the func- 
tion heads. The LUNAR system facility for interpreting such construc- 
tions automatically gets the preferred interpretation, since the quantifiers 
from subordinate constituents are accumulated and nested before the 
quantifier for a given noun phrase is inserted into the quantifier collar. 

To illustrate the process in detail, consider the interpretation of the 
above example. In the processing of the constituents of the noun phrase 
whose head is “departure time,” the quantifier 

(FOR EVERY X2 I FLIGHT : (EQUAL (OWNER X2) AMERICAN) ; 
DLT) 

is returned from the interpretation of the “flight” noun phrase (which 
gets the SEM X2). The temporary QUANT accumulator in the function 
SEMSUB (discussed in Section 6.7), at this point contains the single 
‘‘empty” quantifier collar DLT. This is now modified by substituting the 
returned quantifier for the DLT, resulting in the QUANT accumulator 
now containing the returned quantifier 

(FOR EVERY X2 / FLIGHT : (EQUAL (OWNER X2) AMERICAN) ; 
DLT) 

(with its DLT now marking the “hole” in the collar). 

When all of the subordinate constituents have been interpreted, and 
their SEM’s have been inserted into the right-hand side schema of the 
rule interpreting the “departure time” noun phrase, the resulting instan- 
tiated schema will be 

(QUANT (FOR THE X1 / (DTIME X2 BOSTON) : T ; DLT) 1. 
This is then evaluated, again resulting in the DLT in the temporary 
QUANT accumulator being replaced with this new quantifier (thus in- 
serting the definite quantification THE inside the scope of the universal 
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quantifier EVERY that is already there). The result of this interpretation 
is to return the SEM-QUANT pair consiting of the SEM X1 and the 
QUANT 

(FOR EVERY X2 / FLIGHT : (EQUAL (OWNER X2) AMERICAN) ; 
(FOR THE X 1 /  (DTIME X2 BOSTON) : T ; DLT )). 

The right-hand side for the next higher rule (the one that interprets the 
command “list x”) contains a PRED operator, so that when its instan- 
tiated schema 

(PRED (PRINTOUT XI)) 

is executed, i t  will grab the quantifier collar from below to produce the 
interpretation 

(FOR EVERY X2 / FLIGHT : (EQUAL (OWNER X2) AMERICAN) ; 
(FOR THE XI / (DTIME X2 BOSTON) : T ; 

(PRINTOUT XI) )). 

7.4 Relative Clauses 

One of the features of the LUNAR system that makes it relatively 
powerful in the range of questions it can handle is its general treatment 
of relative clause modifiers. This gives it a natural ability to handle many 
questions that would be awkward or  impossible to pose to many data 
management systems. Relative clauses permit arbitrary predicate restric- 
tions to be imposed on the range of quantification of some iterative 
search. The way in which relative clauses are interpreted is quite simple 
within LUNAR’S general semantic interpretation framework. I t  is done 
by a general RRULE R:REL, which is implicitly included in the 
RRULES for any noun phrase. 

The rule R :  REL will match a noun phrase if it finds a relative clause 
structure modifying the phrase. On each such relative clause, it will 
execute a function RELTAG that will find the node in the relative clause 
corresponding to the relative pronoun (“which” or “that”), and will 
mark this found node with the same variable X that is being used for the 
noun phrase that the relative clause modifies. This pronoun will then 
behave as if it had already been interpreted and assigned that variable as 
its SEM. The semantic interpreter will then be called on the relative 
clause node, just like any other sentence being interpreted, and the result 
will be a predicate with a free occurrence of the variable X. This resulting 
predicate is then taken, together with any other RRULE predicates ob- 
tained from adjectival and prepositional phrase modifiers, to form the 
restriction on the range of quantification of the modified noun phrase. 
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One consequence of a relative clause being interpreted as a subordinate 
S node (in fact, a consequence of any subordinate S node interpretation) 
is that, since the PRERULES used in interpreting the subordinate S node 
all have PRED operators in their right-hand sides, any quantifiers pro- 
duced by noun phrases inside the relative clause will be grabbed by the 
relative clause itself and not passed up to the main clause. This rules out 
interpretations of sentences like “List the samples that contain every 
major element” in anomalous ways such as 

(FOR EVERY X / MAJORELT : T ; 
(FOR EVERY Y / SAMPLE : (CONTAIN Y X) ; 

(PRINTOUT Y) )) 
(i.e., “For every major element list the samples that contain it”) instead 
of the correct 

(FOR EVERY Y / SAMPLE : 
(FOR EVERY X / MAJORELT : T : (CONTAIN Y X)) ; 
(PRINTOUT Y) ). 

Except in certain opaque context situations, this seems to be the pre- 
ferred interpretation. As in other cases, however, although LUNAR’S 
interpretation system is capable of producing alternative interpretations 
for some other criteria to choose between, the demonstration prototype 
instead uses rules that determine just those interpretations that seem to 
be most likely in its domain. 

7.5 Other Types of Modifiers 
In addition to relative clauses, there are other kinds of constructions 

in English that function as predicates to restrict the range of quantifica- 
tion, These include most adjectives and prepositional phrases. They are 
interpreted by RRULES that match the appropriate structures in a noun 
phrase and produce a predicate with free variable X (which will be 
instantiated with the variable of quantification for the noun phrase being 
interpreted). I will call such modifiers predicutors since they function as 
predicates to restrict the range of quantification. Examples of predicators 
are modifiers like “recent” and “about olivine twinning” in phrases like 
“recent articles about olivine twinning”, The interpretation of this phrase 
would produce the quantifier 

(FOR GEN X / DOCUMENT : 
(AND (RECENT X) (ABOUT X (OLIVINE TWINNING))) ; DLT ). 

Note that not all adjectives and prepositional phrases are interpreted 
as just described. Many fill special roles determined by the head noun, 
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essentially serving as arguments to a function. For example, in a noun 
phrase such as “the silicon concentration in S10046,” the adjective “sil- 
icon” is specifying the value of one of the arguments to the function 
“concentration,” rather than serving as an independent predicate that 
the concentration must satisfy. (That is, this phrase is not equivalent to 
“the concentration in S10046 which is silicon,” which does not make 
sense). Similarly, the prepositional phrase “in S10046” is filling the same 
kind of argument role, and is not an independent modifier. I will call this 
class of modifiers role fillers. 

In some cases, there are modifiers that could either be treated as 
restricting predicates or as filling argument roles in a function, depending 
on the enumeration function that is being used to represent the meaning 
of the head noun. For example, a modifier like “to Chicago” in “flights 
to Chicago” could either be interpreted as an independent predicate 
(ARRIVE X CHICAGO) modifying the flight, or as an argument to a 
specialized flight enumeration function FLIGHT-TO which enumerates 
flights to a given destination. In the flight schedules application, the 
former interpretation was taken, although later query optimization rules 
(see smart quantifiers, below) were able to transform the resulting MRL 
expression to a form equivalent to the latter to gain efficiency. 

In general English, there are cases in which it seems moot whether one 
should treat a given phrase as filling an argument role or as a restricting 
predicate. However, there are also clear cases where the head noun is 
definitely a function and cannot stand alone without some argument being 
either explicitly present or inferable from context. In these cases such 
modifiers are clearly role fillers. On the other hand, the diversity of 
possible modifiers makes it unlikely that all adjectives and prepositional 
phrases could be interpretable as role fillers in any general or economical 
fashion. Thus, the distinction between predicators and role fillers seems 
to be necessary. 

There is another use of a modifier that neither fills an argument role 
nor stands as an independent predicate, but rather changes the interpre- 
tation of the head noun. An example is “modal” in “modal olivine 
analyses.” This adjective does not describe a kind of olivine, but rather 
a kind of analysis that is different from the normal interpretation one 
would make of the head “analysis” by itself. Such modifiers might be 
called specializers since they induce a special interpretation on the head 
noun. Note that these distinctions in types of modification refer to the 
role of modifier plays in a given construction, not to anything inherent 
in the modifier itself. 

The sentence “List modal olivine analyses for lunar samples that con- 
tain silicon” contains a mixture of the different kinds of modifiers. The 
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presence of the specializer adjective “modal” blocks the application of 
the normal NRULE N :  ANALYSIS (it has a NOT template that checks 
for it), and it enables a different rule N : MODAL-ANALYSIS instead. 
The adjective “olivine” and the prepositional phrase are both interpreted 
by REFS in the right-hand side of this rule to fill argument slots in the 
enumeration function DATALIN E. There are no predicators modifying 
“analyses,” but there is a potential predicator “lunar” modifying ”Sam- 
ples” and a restrictive relative clause also modifying samples. In 
LUNAR, the apparently restrictive modifier “lunar” modifying a word 
like “samples” is instead interpreted as a specializer that does not make 
a difference, since LUNAR knows of no other kind of sample. However, 
this is clearly not a limitation of the formalism. 

The relative clause modifying “samples” is interpreted as described 
above to produce the predicate 

(CONTAIN X2 SI02).  

The interpretation of the noun phrase “lunar samples that contain sili- 
con” thus consists of the SEM X2 and the QUANT 

(FOR GEN X2 / SAMPLE : (CONTAIN X2 SI02) ; DLT ). 

This SEM-QUANT pair is returned to the process interpreting the noun 
phrase “modal olivine analyses for ... ,” which in turn produces a SEM 
X1 and a QUANT 

(FOR GEN X2 / SAMPLE : (CONTAIN X2 SI02) ; 
(FOR GEN X 1 / (DATALINE X2 OVERALL OLIV) : T ; 

DLT)). 

This is returned to the rule interpreting the main verb “list,” whose right- 
hand side produces the SEM (PRINTOUT XI) with the same QUANT 
as above. This process returns to the PRERULE for positive imperative 
sentences, where the quantifiers are grabbed to produce the interpretation 

(FOR GEN X2 / SAMPLE : (CONTAIN X2 3 0 2 )  ; 
(FOR GEN X 1 / (DATALINE X2 OVERALL OLIV) : T : 

(PRINTOUT X1) )). 

7.6 Averages and Quantifiers 

An interesting class of quantifier interaction problems occurs with 
certain operators such as “average,” “sum,” and “number.” In a sen- 
tence such as “What is the average silicon concentration in breccias?” 
it is clear that the generic “breccias” is not to be interpreted as a 
universal quantifier dominating the average computation, but rather the 



NATURAL LANGUAGE QUESTION ANSWERING 45 

average is to be performed over the set of breccias. A potential way of 
interpreting such phrases would be to treat average as a specializer 
adjective which, when applied to a noun like “concentration,” produces 
a specialized enumeration function that computes the average. This spe- 
cial interpretation rule, would then interpret the class being averaged 
over in a special mode as a role filler for one of the arguments to the 
AVERAGE-CONCENTRATION function. However, this approach 
would lack generality, since it would require a separate interpretation 
rule and a separate AVERAGE-X function for every averageable meas- 
urement X. Instead, one would like to treat average as a general operator 
that can apply to anything averageable. Doing this, and making it interact 
correctly with various quantifiers is handled in the LUNAR system by 
a mechanism of some elegance and generality. I will describe here the 
interpretation of averages; the interpretations of sums and other such 
operators are similar. 

Note that there are two superficial forms in which the average operator 
is used: one is a simple adjective modifying a noun (“the average 
concentration. . .”), and one is as a noun referring to a function 
that is explicitly applied to an argument (“the average of concentra- 
tions . . .”). LUNAR’S grammar standardizes this variation by 
transforming the first kind of structure into the second (effectively in- 
serting an “of ... PL” into the sentence). As a result, average always 
occurs in syntactic tree structures as the head noun of a noun phrase 
with a dependent prepositional phrase whose object has a “NIL ... PL” 
determiner structure and represents the set of quantities to be averaged. 

In interpreting such noun phrases, the NRULE invoked by a head 
noun “average” or “mean” calls for the interpretation of the set being 
averaged with the special TYPEFLAG SET. This will result in that 
node’s being interpreted with a special DRULE D:SETOF, which will 
construct an intensional set representation for the set being averaged. 
The data base function AVERAGE knows how to use such an intensional 
set to enumerate members and compute the average. The NRULE for 
“average” is 

[ N : AVERAGE 
(NP.N (MEM I (MEAN AVERAGE))) 
(NP.PP (MEM 2 (QUANTITY))) 
+ (QUOTE (SEQL (AVERAGE X / ( #  2 2 SET) ))) 1. 

7.7 Short ScopelBroad Scope Distinctions 

Another interesting aspect of quantifier nesting is a fairly well-known 
distinction between so called short-scope and broad-scope interpretation 
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quantifiers. For example, Bohnert and Backer (1967) present an account 
of the differences between “every” and “any” and between “some” 
and “a” in contexts such as the antecedents of if-then statements by 
giving “any” and “some” the broadest possible scope and “every” and 
“a” the narrowest. For example, using the LUNAR MRL notation, 

If any soldier stays home, there is no war 

(FOR EVERY x / soldier ; (IF (home x) 
THEN (not war)) 

If every soldier stays home, there is no war 

(IF (FOR EVERY x / soldier ; (home x)) 
THEN (not war)) 

If some soldier stays home, there is no war 

(FOR SOME x / soldier ; (IF (home x) 
THEN (not war))) 

If a soldier stays home, there is no war 

(IF (FOR SOME x / soldier ; (home x)) 
THEN (not war)). 

The scope rules of Bohnert and Backer are enforced rules of an arti- 
ficial language that approximates English and are not, unfortunately, 
distinctions that are always followed in ordinary English. In ordinary 
English, only a few such distinctions are made consistently, while in 
other cases the scoping of quantifiers appears to be determined by which 
is most plausible (see discussion of plausibility evaluation in Section 
10.5). 

In LUNAR, a slightly different form of this shodbroad scope distinc- 
tion arose in the interaction of operators like average with universal 
quantifiers. For example, the sentence “List the average concentration 
of silicon in breccias” clearly means to average over all breccias, while 
“List the average concentration of silicon in each breccia” clearly means 
to compute a separate average for each breccia. (In general, there are 
multiple measurements to average even for a single sample.) The senten- 
ces “List the average concentration of silicon in every breccia,” and 
“List the average concentration of silicon in all breccias” are less clear, 
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but it seems to be that the average over all breccias is slightly preferred 
in these cases. At any rate, the treatment of quantifiers needs to be able 
to handle the fact that there are two possible relative scopings of the 
average operator with universal quantifiers, and the fact that the choice 
is determined at least for the determiner “each” and for the ‘‘generic” 
or NIL-PL determiner. 

LUNAR handles these scope distinctions for the “average” operator 
by a general mechanism that applies to any operator that takes a set as 
its argument. As discussed above, the right-hand side of the 
N:AVERAGE rule calls for the interpretation of the node representing 
the set being averaged over with TYPEFLAG SET. This causes a 
DRULE D: SET OF to be used for interpreting that node. The right-hand 
side of D:  SETOF is 

(SETGEN (SETOF X / ( #  0 NRULES) : (# 0 RRULES) )) 

where SETGEN is a function that grabs certain quantifiers coming from 
subordinate interpretations and turns them into UNION operations in- 
stead. The generic quantifier is grabbed by this function and interpreted 
as a union. However, the quantifier EACH is not grabbed by SETGEN 
but is passed on up as a dominating quantifier. Thus, the sentence “What 
is the average concentration of silicon in breccias?” becomes 

(FOR THE X4 / (SEQL (AVERAGE X5 i 
(UNION X7 / (SEQ TYPECS) : T : 

(PRINTOUT X4) ) 
(SETOF X6 i (DATALINE X7 OVERALL SI02) : T)))) : T ; 

(i.e., the average is computed over the set formed by the union over all 
type C rocks X7 of the sets of measurements of S102 in the individual 
X7’s). On the other hand, “What is the average concentration of silicon 
in each breccia?” becomes 

(FOR EACH XI2 i (SEQ TYPECS) : T ; 
(FOR THE X9 / (SEQL (AVERAGE X10 / 

(SETOF XI 1 / (DATALINE XI2 OVERALL SI02) : T ))) : T ; 
(PRINTOUT X9) )) 

(i.e., a separate average is computed for each type C rock X12). 

7.8 Wh Questions 

In addition to simple yesho questions and imperative commands to 
print the results of computations, LUNAR handles several kinds of so- 
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called wh questions. Examples are “What is the concentration of silicon 
in S10046?”, “Which samples contain silicon?”, and “How many sam- 
ples are there?” These fall into two classes: those in which an interro- 
gative pronoun stands in the place of an entire noun phrase, as in the 
first example, and those in which an interrogative determiner introduces 
an otherwise normal noun phrase. In both cases, the noun phrase con- 
taining the interrogative word is usually brought to the front of the 
sentence from the position that it might otherwise occupy in normal 
declarative word order, but this is not always the case. 

7.8.1 In terro ga five Determ he rs  

The natural representation of the interrogative determiners would seem 
to be to treat them just like any other determiner and represent a sentence 
such as the second example above as 

S Q  
NP DETWHQ 

N SAMPLE 
N U  PL 

AUX TNS PRESENT 
V P  VCONTAIN 

NP NPR SILICON 

The interpretation procedure we have described seems to work quite well 
on this structure using a DRULE that matches the interrogative noun 
phrase and generates the quantifier 

(FOR EVERY X / (# 0 NRULES) : (AND (# 0 RRULES) DLT) ; 
(PRINTOUT X)). 

Note that the DLT in the quantifier (where the interpretation of the main 
clause is to be inserted) is part of the restriction on the range, and the 
quantified operator is a command to print out the answer. The structure 
of the quantifier in this case seems somewhat unusual, but the effect is 
correct and the operation is a reasonably natural one given the capabilities 
of the semantic interpreter. 

However, when we try to apply this kind of analysis to conjoined 
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sentences, such as “What samples contain silicon and do not contain 
sodium?”, the standard kind of deep structure assigned by a transfor- 
mational grammar to conjoined sentences is not compatible with this 
interpretation. The usual reversal of the conjunction reduction transfor- 
mations in a transformational grammar would produce a structure some- 
thing like 

S AND 
S Q  

NP DETWHQ 
N SAMPLE 
NU PL 

AUX TNS PRESENT 
V P  VCONTAIN 

NP NPR SILICON 
S Q  

NEG 
NP DETWHQ 

N SAMPLE 
NU PL 

AUX TNS PRESENT 
V P  VCONTAIN 

NP NPR SODIUM. 

This structure corresponds to the conjunction of the two questions “What 
samples contain silicon?” and “What samples do not contain sodium?”, 
which is the interpretation that it would receive by the LUNAR rules 
with the above DRULE for wh-determiners. However, this is not what 
the original conjoined question means; the intended question is asking 
for samples that simultaneously contain silicon and not sodium. 

In order to handle such sentences, it is necessary to distinguish some 
constituent that corresponds to the conjunction of the two predicates 
“contain silicon” and “not contain sodium,” which is itself a constituent 
of a higher level “what samples” operator. To handle such constructions 
correctly for both conjoined and nonconjoined constructions, LUNAR’S 
ATN grammar of English was modified to assign a different structure to 
wh-determiner questions than the one that is assigned to other determi- 
ners. These sentences are analyzed as a special type of sentence, a noun 
phrase question (NPQ), in which the top level structure of the syntactic 
representation is that of a noun phrase, and the matrix sentence occurs 
as a special kind of subsidiary relative clause. For example, the sentence 
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“Which samples contain silicon?” is represented syntactically as 

S NPQ 
NP DETWHICHQ 

N SAMPLE 
NU PL 
S QREL 

NP DETWHR 
N SAMPLE 
NU PL 

AUX TNS PRESENT 
VP VCONTAIN 

NP DET NIL 
N SILICON 
NU SG. 

This structure provides an embedded S node inside the higher level 
question, whose interpretation is a predicate with free variable bound in 
the question operator above. This embedded S node can be conjoined 
freely with other S nodes, while remaining under the scope of a single 
question operator. In this case, the appropriate DRULE (for a wh-deter- 
miner in a plural NPQ utterance) is simply 

[ D 1 WHQ-PL 
(NP.DET (AND (MEM I WHQ) (EQU 2 PL))) 

(QUANT (FOR EVERY X / (# 0 NRULES) : 
--* 

( #  0 RRULES) ; (PRINTOUT X))) I. 

Since the matrix sentence has been inserted as a relative clause in the 
syntactic structure assigned by the grammar, it will be interpreted by the 
RRULE R:REL in the subordinate interpretation (# 0 RRULES). A 
similar rule for interpreting singular noun phrases (“which sample con- 
tains. , ,”) produces a quantifier with (quant) = THE, instead of 
EVERY, thus capturing the presupposition that there should be a single 
answer. 

All of the interrogative determiners, “which,” “what,” and “how 
many” are treated in the above fashion. The right-hand side of the “how 
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many” rule is 

(FOR THE X / (NUMBER X / (# 0 NRULES) : (# 0 RRULES)) ; 
(PRINTOUT X)). 

Here again, the interpretation of the matrix sentence is picked up in the 
call (# 0 RRULES). (The use of the same variable name in two different 
scopes does not cause any logical problems here, so no provision was 
made in LUNAR to create more than one variable for a given noun 
phrase.) 

7.8.2 lnterro ga tive Pro nouns 

A general treatment of the interrogative pronouns would require mod- 
ifications of the assigned syntactic structures similar to the ones discussed 
above for interrogative determiners in order to handle conjunctions cor- 
rectly. That is, sentences such as “What turns generic quantifiers into 
set unions and passes ‘each’ quantifiers through to a higher level?” seem 
to require an embeded S node to serve as a conjoined proposition inside 
a single “what” operator. However, it is far more common for conjoined 
questions with interrogative pronouns to be interpreted as a conjunction 
of two separate questions. This is especially true for conjoined “what is 
...” questions. For example, “What is the concentration of silicon in 
S10046 and the concentration of rubidium in S10084?” is clearly not 
asking for a single number that happens to be the value of the concen- 
tration in both cases. 

The LUNAR system contains rules for handling interrogative pronouns 
only in the special case of “what is. . .” questions. In this special case, 
conjoined questions fall into two classes, both of which seem to be 
handled correctly without special provisions in the grammar. In questions 
where the questioned noun phrase contains an explicit relative clause, 
that clause will contain an S node where conjunctions can be made and 
LUNAR’S current techniques will treat this as one question with a con- 
joined restriction (e.g., “What is the sample that contains less than 15% 
silicon and contains more than 5% nickel?”). On the other hand, when 
there is no explicit relative clause, LUNAR will interpret such questions 
as a conjunction of separate questions (e.g., “What is the concentration 
of silicon in S10046 and the concentration of rubidium in S10084?”). 

The conventional structure assigned to “what is. . .” sentences by a 
transformational grammar represents the surface object as the deep sub- 
ject, with a deep verb “be” and predicate complement corresponding to 
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the interrogative pronoun “what.” For example, in LUNAR the question 
“What is the concentration of silicon in S10046?” becomes 

S Q  
NP DETTHE 

N CONCENTRATION 
NU SG 
PP PREPOF 

NP DET NIL 
N SILICON 
NU SG 

NP NPR S10046 
PP PREPIN 

AUX TNS PRESENT 
VP V B E  

NP DET WHQ 
N THING 
NU SG/PL 

A special SRULE for the verb “be” with complement “WHQ THING 
SG/PL” handles this case with a right-hand side schema: 

(QUOTE (PRINTOUT (# 1 1))) 

where the REF (# 1 1) refers to the subject noun phrase. 

“what” would involve a DRULE whose right-hand side was 
A somewhat more general treatment of the interrogative pronoun 

(FOR EVERY X / THING : DLT ; (PRINTOUT X) 1. 
Where the interpretation of the matrix sentence is to be inserted as a 
restriction, on the range of quantification and the overall interpretation 
is a command to print out the values that satisfy it. (THING in this case 
is meant to stand for the universal class.) One would not want to apply 
this rule in general to the simple “What is ...” questions as above, since 
it would result in an interpretation that was less efficient (i.e., would 
enumerate all possible things and try to filter out the answer with an  
equality predicate). For example, “what is the concentration of silicon 
in S10046” would be interpreted 

(FOR THE X / (DATALINE SIN46 OVERALL SI02) : T ; 
(FOR EVERY Y / THING : (EQUAL X Y) ; 

(PRINTOUT Y) )) 
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instead of 

(FOR THE X / (DATALINE S 10046 OVERALL SI02) : T ; 
(PRINTOUT X)) .  

Thus, one would still want to keep the special “what is ...” rule and 
LUNAR would only use the general rule in cases where the ”what is ...” 
rule did not apply. (When the “what is ...” rule does apply, it does not 
even call for the interpretation of the “what” noun phrase that it has 
matched, so the general rule would not be invoked.) 

Alternatively, one could use the general rule for all cases and then 
perform post-interpretive query optimization (see Section 8) to transform 
instances of filtering with equality predicates to a more efficient form 
that eliminates the unnecessary quantification. 

7.8.3 Other Kinds of Wh Questions 
Note that LUNAR interprets “what is ...” questions only as a request 

for the value of some function or the result of some search or  computa- 
tion, and not as requesting a definition or  explanation. For example if 
LUNAR is asked “what is a sample” it will respond with an example 
(e.g., “S10046”), and if it is asked “what is S10046,” it will respond 
“S10046.” LUNAR is not aware of the internal structure of the defining 
procedures for its terms, nor does it have any intensional description of 
what samples are, so it has no way of answering the first type of question. 
There is no difficulty, however, in defining another rule for “what is 
...” to apply to proper nouns and produce an interpretation with an 
operator NAME-CLASS (instead of PRINTOUT) that will print the class 
of an individual instead of its name. “What is S10046?” would then be 
interpreted as (NAME-CLASS S 10046), which would answer “a sam- 
ple.” 

Getting LUNAR to say something more complete about how S10046 
differs from other samples, such as “a sample that contains a large olivine 
inclusion,” is another matter. Among other problems, this would begin 
to tread into the area of pragmatics, where considerations such as the 
user’s probable intent in asking the question and appropriateness of 
response in a particular context, as  well as semantic considerations of 
meaning, become an issue (see Section 11.5). All of this is well beyond 
the scope of systems like LUNAR. However, deciding what semantic 
representation to assign as the intent of such a question is not nearly as 
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difficult as deciding what the defining procedure for some of the possible 
intents should be. LUNAR’S mechanisms are suitable for generating the 
alternative possible semantic representstions. 

8. Post-Interpretive Processing 

As mentioned before, the LUNAR meaning representation language 
has been designed both as a representation of executable procedures and 
as a symbolic structure that can be manipulated as an intensional object. 
Although every expression in the LUNAR MRL has an explicit semantics 
defined by its straightforward execution as a procedure, that procedure 
is frequently not the best one to execute to answer a question or carry 
out a command. For example, in the flight schedules applications, the 
literal interpretation of the expression 

(FOR EVERY X / FLIGHT : (CONNECT X BOSTON CHICAGO) ; 
(PRINTOUT X)) 

is to enumerate all of the flights known to the system, filtering out the 
ones that do not go from Boston to Chicago, and printing out the rest. 
However, in a reasonable data base for this domain, there would be 
various indexes into the flights, breaking them down by destination city 
and city of origin. If such an index exists, then a specialized enumeration 
function FLIGHT-FROM-TO could be defined for using the index to 
enumerate only flights from a given city to another. In this case, the 
above request could be represented as 

(FOR EVERY X / (FLIGHT-FROM-TO BOSTON CHICAGO) : T ; 
(PRINTOUT X)). 

which would be much more efficient to execute. 
Given the possibility of using specialized enumeration functions, one 

can then either write special interpretation rules to use the more specific 
enumeration function in the cases where it is appropriate, or one can 
perform some intensional manipulations on the interpretation assigned 
by the original rules to transform it into an equivalent expression that is 
more efficient to execute. The first approach was used in the original 
flight schedules system. An approach similar to the latter was used in 
the grammar information system, and to some extent in LUNAR, by 
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using “smart” quantifiers (see below). Recently, Reiter (1977) has pre- 
sented a systematic treatment of a class of query optimizations in systems 
like LUNAR that interface to a relational data base. 

Other post-interpretive operations on the MRL expression are per- 
formed in LUNAR to analyze the quantifiers and make entries in a 
discourse directory for potential antecedents of anaphoric expressions. 
Subsequently, definite descriptions and pronouns can make reference to 
this directory to select antecedents. I will not go into the treatment of 
anaphoric expressions in this paper other than to say that the search for 
the antecedent is invoked by an operator ANTEQUANT in the right- 
hand side of the DRULES that interpret anaphoric noun phrases. In 
general, this results in the generation of a quantifier, usually a copy of 
the one that was associated with the antecedent. Occasionally, the an- 
tecedent will itself fall in the scope of a higher quantifier on which it 
depends, in which case such governing quantifiers will also be copied 
and incorporated into the current interpretation. Some of the character- 
istics of LUNAR’S treatment of anaphora are covered in Nash-Webber 
(1976) and woods et al .  (1972). 

8.1 Smart Quantifiers 

In the grammar information system, a notation of “smart” quantifier 
was introduced, which rather than blindly executing the quantification 
procedure obtained from semantic interpretation, made an effort to de- 
termine if there was a more specific enumeration function that could be 
used to obtain an equivalent answer. In general, the restriction on the 
range of quantification determines a subclass of the class over which 
quantification is ranging. If one can find a specialized enumeration func- 
tion that enumerates a subclass of the original class but is still guaranteed 
to include any of the members that would have passed the original 
restriction, then that subclass enumeration function can be used in place 
of the original. 

In the grammar information system, tables of specialized enumeration 
functions, together with sufficient conditions for their use, were stored 
associated with each basic class over which quantification could range. 
A resolution theorem prover a la Robinson (1965) was then used to 
determine whether the restriction of a given quantification implied one 
of the sufficient conditions for a more specialized class enumeration 
function. If so, the more specialized function was used. Unlike most 
applications of resolution theorem proving, the inferences required in 
this case are all very short, and since the purpose of the inference is to 
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improve the efficiency of the quantification, a natural bound can be set 
on the amount of time the theorem prover should spend before the 
attempt should be given up and the original enumeration function used. 

In general, sufficiency conditions for specialized enumeration functions 
are parameterized with open variables to be instantiated during the proof 
of the sufficiency condition and then used as parameters for the special- 
ized enumeration function. The resolution theorem proving strategies 
have a nice feature of providing such instantiated parameters as a result 
of their proofs; e.g., by using a mechanism such as the “answer” pred- 
icate of Green (1969). 

Smart quantifiers were intended in general to be capable of other 
operations, such as estimating the cost of a computation from the sizes 
of the classes being quantified over and the depth of quantifier nesting 
(and warning the user if the cost might be excessive), saving the results 
of inner loop quantifications where they could be reused, interchanging 
the scopes of quantification to bring things that do not change outside a 
loop, etc. The capabilities actually implemented, however, are much 
more limited. 

8.7.7 Path Enumeration in ATN’s 

Smart quantifiers were essential for efficiency in the grammar infor- 
mation system’s enumeration of paths through its ATN. The system 
contained a variety of specialized path enumeration functions: one for 
paths between a given pair of states, one for paths leaving a given state, 
one for paths arriving at a given state, one for paths irrespective of end 
states, and versions of all of these for looping and nonlooping paths. 
Each specialized enumeration function was associated with a parameter- 
ized sufficiency condition for its use. For example, the function for 
nonlooping paths leaving a given state had a table entry equivalent to 

(PATHSEQ Y T) if (AND (NOLOOP X) (START X Y ) )  

where X refers to the variable of the class being quantified over, Y is a 
parameter to be instantiated, and (PATHSEQ Y T) is the enumeration 
function to be used if the sufficiency condition is satisfied. 

Thus, if a quantification over paths had a restriction such as (AND 
(CONNECT-PATH X S/ S/VP) (NOLOOP X)) and the theorem prover 
had axioms such as (CONNECT-PATH X Y Z)+(START X Y), then 
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the theorem prover would infer that the sufficiency condition (AND 
(NOLOOP X) (START X Y)) is satisfied with Y equal to S/ and therefore 
the specialized enumeration function (PATHSEQ S/  T) can be used. 

Notice that the order of conjuncts in the restriction is irrelevant, and 
the restriction need only imply the sufficiency condition not match it 
exactly. In the above, there are still conditions in the restriction that will 
have to be checked as a filter on the output of the specialized enumeration 
function to make sure that the end of the path is at state SNP. In general, 
it would be nice to remove from the restriction that portion that is already 
guaranteed to be satisfied by the new enumeration function, but that is 
easier said than done. In the grammar information system the original 
restriction was kept and used unchanged. 

8.1.2 Document Retrieval in LUNAR 

In the LUNAR system, a special case of smart quantifiers, without a 
general theorem prover, is used to handle enumeration of documents 
about a topic. When the FOR function determines that the class of objects 
being enumerated is DOCUMENT, it looks for a predicate (ABOUT X 
TOPIC) in the restriction (possibly in the scope of a conjunction but not 
under a negative). It then uses this topic as a parameter to an inverted 
file accessing routine which retrieves documents about a given topic. 

8.2 Printing Quantifier Dependencies 

The LUNAR MRL permits the natural expression of fairly complex 
requests such as “What is the average aluminum concentration in each 
of the type c rocks?” The interpretation of this request would be 

(FOR EVERY X / (SEQ TYPECS) : T ; 

: T ; (PRINTOUT Y) )). 
(FOR THE Y I (AVERAGE Z / (DATALINE X OVERALL AL203)) 

If the PRINTOUT command does nothing more than print out a repre- 
sentation for the value of its argument, the result of this command will 
be nothing more than a list of numbers, with no indication of which 
number goes with which of the rocks. Needless to say, this is usually not 
what the user expected. 
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For special classes of objects, say concentrations, a pseudo-solution 
to this problem would be to adopt a strategy of always printing out all 
conceivable dependencies for that object (e.g., the sample, phase, and 
element associated with that concentration). This would be sufficient to 
indicate what dependencies each answer had on values of arguments, but 
would take no account of which of those dependencies was currently 
varying and which were fixed by the request. Moreover, this approach 
would not work in the above case, since the objects being printed are the 
results of a general purpose numerical averaging function, which does 
not necessarily have any dependencies, depending on what is being av- 
eraged and what classes are being averaged over. 

LUNAR contains a general solution to this quantifier dependency 
problem that is achieved by making the PRINTOUT command an opaque 
operator that processes its argument in a semi-intelligent way as an 
intensional object. PRINTOUT examines its argument for the occurrence 
of free variables. If the argument is itself a variable, it looks up the 
corresponding governing quantifier in the discourse directory (the same 
directory used for antecedents of anaphoric expressions) and checks that 
quantifier for occurrences of free variables. If it finds free variables in 
either place, it means that the object it is about to print has a dependency 
on those variables. In that case it prints out the current values of those 
variables along with the value that it is about to print out. In the case of 
the example above, the variable Y has the corresponding class specifi- 
cation (DATALINE X OVERALL SI02) with restriction T, and is thus 
dependent on the variable X, which is ranging over the rocks. As a result, 
the printout from this request would look like 

S10018 12.48 PCT 
510019 12.80 PCT 
S10021 12.82 PCT 

This mechanism works for arbitrary nesting of any number of quantifiers. 

9. An Example 

As an example of the overall operation of the semantic interpreter to 

“What is the average modal plagioclase concentration for lunar sam- 

review and illustrate the preceding discussions, consider the sentence 

ples that contain rubidium?” 
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This sentence has the following syntactic structure assigned to  it by the 
gram mar: 

S Q  
NP DETTHE 

N AVERAGE 
NU SG 
PP PREPOF 

NPDET NIL 
ADJ MODAL 
ADJ N PLAGIOC.LASE 

N CONCENTRATION 
NU PL 
PP PREPFOR 

NP DET NIL 
ADJ LUNAR 
N SAMPLE 
NU PL 
S REL 

NP DETWHR 
N SAMPLE 
NU PL 

AUX TNS PRESENT 
VP VCONTAIN 

NP DET NIL 
N RUBIDIUM 

AUX TNS PRESENT NU SG 
VP V B E  
NP DETWHQ 

N THING 
NU SG/PL. 

Semantic interpretation begins with a call to INTERP looking at the 
topmost S node with TYPEFLAG NIL. The function RULES looking at 
an S node with TYPEFLAG NIL returns the global rule tree PRE- 
RULES. These rules look for such things as yesho  question markers, 
sentential negations, etc. In this case, a rule PR6 matches and right-hand 
side, (PRED (# 0 SRULES)), specifies a call to INTERP for the same 
node with TYPEFLAG SRULES. 

The function RULES looking at the S node with TYPEFLAG SRULES 
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returns a rule tree which it gets from the dictionary entry for the head of 
the sentence (the verb BE), and in this case a rule S:  BE-WHAT matches. 
Its right-hand side is 

(PRED (PRINTOUT (# 1 1))) 

specifying a schema into which the interpretation of the subject noun 
phrase is to be inserted. 

The semantic interpreter now begins to look at the subject noun phrase 
with TYPEFLAG NIL. In this case, RULES is smart enough to check 
the determiner THE and return the rule tree: 

(D:THE-SG2 NIL D:THE-SG NIL D:THE-PL) 

of which, the rule D: THE-SG matches successfully. The right-hand side 
of this rule is 

(QUANT (FOR THE X / (# 0 NRULES) : (# 0 RRULES) ; DLT)) 

which specifies that a quantifier is to be constructed by substituting in 
the indicated places the interpretations of this same node with TYPE- 
FLAGS NRULES and RRULES. 

The call to interpret the subject noun phrase with TYPEFLAG 
NRULES finds a list of NRULES in the dictionary entry for the word 
“average,” consisting of the single rule N : AVERAGE. This rule, which 
we presented previously in Section 7.6, has a right-hand side 

(QUOTE (SEQL (AVERAGE X / (# 1 1 SET) ))) 

which calls for the interpretation of the “concentration” noun phrase 
with TYPEFLAG SET. The call to interpret the “average” node with 
TYPEFLAG RRULES, which will be done later, will result in the empty 
restriction T. 

The call to interpret the “concentration” noun phrase with TYPE- 
FLAG SET uses a list of rules (D:SETOF NIL D:NOT-SET) where 
D : SETOF, which has been discussed previously in Section 7.7, checks 
for a determiner and number consistent with a set interpretation (i.e., 
determiner THE or NIL and number PL) and D:NOT-SET will match 
anything else. In this case, D:  SETOF matches, with right-hand side 

(SETGEN (SETOF X / (# 0 NRULES) : (# 0 RRULES) )) 

and calls for the interpretation of the same node with TYPEFLAGs 
NRULES and RRULES. The call with NRULES finds a matching rule 
N : MODAL-CONC after failing to match N : CONCENTRATION be- 
cause of the presence of the adjective MODAL, which is rejected by a 
negated template. N : MODAL-CONC is used to interpret modal concen- 
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trations of minerals in samples as a whole, and has the form 

[N: MODAL-CONC 
(NP.N (MEM 1 (CONCENTRATION))) 
(OR (NP.PP (MEM 2 (SAMPLE))) 

(NP.PP.PP (MEM 2 (SAMPLE))) 
(DEFAULT (2 NP (DET EVERY) 

( N  SAMPLE) 
(NU SG)))) 

(OR (NP.PP (MEM 2 (PHASE MINERAL ELEMENT 

(NP.ADJ#2 (MEM 2 (PHASE MINERAL ELEMENT 

+ (QUOTE (DATALINE (# 2 2) OVERALL (# 3 2))) 1. 

OXIDE ISOTOPE))) 

OXIDE ISOTOPE)))) 

(DEFAULT is a special kind of template that always succeeds and that 
makes explicit bindings for use in the right-hand side. In the above case, 
if the “concentration” noun phrase had not mentioned a sample, then 
the default “every sample” would be assumed.) 

N : MODAL-CONC in turn calls for the interpretations of the “sample” 
noun phrase and the constituent “rubidium.” In interpreting the “sam- 
ple” noun phrase, it again goes through the initial cycle of DRULES 
selected by TYPEFLAG NIL looking at a noun phrase, in this case 
finding a matching rule D:  NIL whose right-hand side is 

(QUANT (FOR GEN X / (# 0 NRULES) : (# 0 RRULES) ; DLT )) 

This in turn invokes an NRULES interpretation of the same phrase which 
uses the rule tree (N:TYPEA N:TYPEB N:TYPEC N:TYPED NIL 
N : SAMPLE) that looks first for any of the specific kinds of samples that 
might be referred to, and failing any of these, tries the general rule 
N :  SAMPLE. N :  SAMPLE checks for the head “sample” with an op- 
tional adjective “lunar” or the complete phrase “lunar material” and has 
a right-hand side 

(QUOTE (SEQ SAMPLES)) 

where SEQ is the general enumeration function for known lists, and 
SAMPLES is a list of all the samples in the data base. 

The RRULES interpretation uses the rule tree ((AND R: SAMPLE- 
WITH R : SAMPLE-WITH-COMP R : QREL R : REL R : PP R : ADJ)), 
which contains a single AND group of rules, all of which are to be tried 
and the results of any successful matches conjoined. The rule R:REL 
matches the relative clause, tagging the relative pronoun with the variable 
of interpretation X13 and then calling for the interpretation of the relative 
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clause via the right-hand side 

(PRED (# 1 1)). 

The interpretation of the relative clause, like that of the main clause 
begins with a set of PRERULES, of which a rule PR6 matches with right- 
hand side 

(PRED (# 0 SRULES)). 

This again calls for the interpretation of the same node with TYPEFLAG 
SRULES. This interpretation finds the rule S : CONTAIN (presented 
earlier in Section 6), whose right-hand side calls for the interpretation of 
its subject noun phrase (which it finds already interpreted with the van- 
able of quantification from above) and its object noun phrase “rubidium.” 
The latter is interpreted by a rule D: MASS, whose right-hand side looks 
up the word “rubidium” in the dictionary to get its standard data base 
representation RB (from a property name TABFORM) and produces the 
interpretation (QUOTE RB). As a SEM-QUANT pair, this is 

((QUOTE RB) DLT). 

This interpretation, together with that of the relative pronoun is re- 
turned to the process interpreting the “contain” clause, where they 
produce (after substitution and right-hand side evaluation) the SEM- 
QUANT pair 

((CONTAIN X13 (QUOTE RB)) DLT). 

This same SEM-QUANT pair is return unchanged by the R:REL rule 
and since that is the only matching RRULE, no conjoining needs to be 
done to obtain the result of the RRULES interpretation of the “sample” 
noun phrase. Inserting this and the NRULES interpretation into the right- 
hand side of D: NIL, and executing, produces the SEM-QUANT pair 

(X13 (FOR GEN XI3 / (SEQ SAMPLES) : 
(CONTAIN X13 (QUOTE RB)) ; DLT )) 

where the right-hand side evaluation of the QUANT operator has embed- 
ded the quantifier in the QUANT accumulator and returned the SEM 
X13. 

We now return to the NRULES interpretation of the “concentration” 
noun phrase, whose right-hand side called for the above interpretation 
and now calls for the interpretation of “plagioclase.” Again, the D: MASS 
rule applies, looking up the TABFORM of the word in the dictionary and 
resulting in the SEM-QUANT pair 

((QUOTE PLAG) DLT). . 
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The substitution of these two into the right-hand side of the rule 
N : MODAL-CONC (and evaluating) produces the SEM-QUANT pair: 

((DATALINE X 13 OVERALL (QUOTE PLAG)) 

(CONTAIN X13 (QUOTE RB)) ; DLT )) 
(FOR GEN X13 / (SEQ SAMPLES) : 

where the quantifier from below is still being passed up. 
The RRULES interpretation of the “concentration” noun phrase pro- 

duces T,  since there are no predicating modifiers, and the insertion of 
these two into the right-hand side of the rule D:  SETOF produces 

(SETGEN (SETOF X12 / (DATALINE X13 OVERALL 
(QUOTE PLAG)) : T )) 

while the quantifier accumulator QUANT contains the collar 

(FOR GEN X13 / (SEQ SAMPLES) : (CONTAIN XI3 (QUOTE RB)) ; 
DLT). 

The execution of the function SETGEN grabs the generic quantifier from 
the register QUANT, leaving QUANT set to DLT, and produces the 
SEM 

(UNION X13 / (SEQ SAMPLES) : (CONTAIN X13 (QUOTE RB)) ; 
(SETOF X12 / (DATALINE X13 OVERALL (QUOTE PLAG)) : T )). 

The quantification over samples has now been turned into a union of sets 
of data lines over a set of samples. 

The resulting SEM and QUANT are returned to the process that is 
interpreting the ”average” phrase, where the insertion into the right- 
hand side of the rule N :  AVERAGE and subsequent evaluation yields 
the SEM-QUANT pair 

((SEQL (AVERAGE XI I / (UNION X13 / 
(SEQ SAMPLES) : (CONTAIN X13 (QUOTE RB)) ; 

(SETOF XI2 / (DATALINE XI3 OVERALL 
(QUOTE PLAG)) : T )))) DLT). 

Interpretation of the “average” phrase with TYPEFLAG RRULES 
produces the SEM-QUANT pair (T DLT), and the insertion of this and 
the above into the right-hand side of the DRULE D:THE-SG and eval- 
uating yields the SEM-QUANT pair 

(XI I (FOR THE XI I / (SEQL (AVERAGE XI I / (UNION X13 / 
(SEQ SAMPLES) : (CONTAIN X13 (QUOTE RBI) ; 

(SETOF X12 / (DATALINE X13 OVERALL (QUOTE PLAG)) : T)))) 
: T ; DLT)). 
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This is returned to the SRULE S :  BE-WHAT where the SEM XI 1 is 
embedded in the right-hand side to produce: 

(PRED (PKINTOUT XI I ) ) .  

Evaluating this expression grabs the quantifier to produce the new 
SEM, which the next higher rule, PR6, passes on unchanged as the final 
interpretation: 

(FOR THE XI I / (SEQL (AVERAGE XI 1 / (UNION XI3  / 
(SEQ SAMPLES) : (CONTAIN X I 3  (QUOTE RB)) ; 

(SETOF XI2 / (DATALINE XI3 OVERALL (QUOTE PLAG)) : T)))) 
: T : (PRINTOUT XI 1 ) ) .  

10. Loose Ends, Problems, and Future Directions 

The techniques that I have described make a good start in handling the 
semantic interpretation of quantification in natural English-especially in 
the interaction of quantifiers with each other, with negatives, and with 
operators like “average.” However, problems remain. Some reflect 
LUNAR’s status as an intermediate benchmark in an intended ongoing 
project. Others reflect the presence of some difficult problems that 
LUNAR would eventually have had to come up against. In the remaining 
sections, I will discuss some of the limitations of LUNAR’s techniques, 
problems left unfaced, and trends and directions for future work in this 
area. 

10.1 Approximate Solutions 

One characteristic of some of the techniques used in LUNAR and 
many other systems is that they are only approximate solutions, A good 
example of an approximate solution to a problem is illustrated by 
LUNAR’s use of the head word of a constituent as the sole source of 
features for the testing of semantic conditions in the left-hand sides of 
rules. To be generally adequate, it seems that semantic tests should be 
applied to the interpretation of a phrase, not just its syntactic structure 
(and especially not just its head). Some of the problems with the approx- 
imate approach became apparent when LUNAR first began to handle 
conjoined phrases. For example, it’s simple semantic tests were no longer 
adequate when, instead of a single noun phrase of type X, a conjunction 
was encountered. This was due to a prior decision that the head of a 
conjoined phrase should be the conjunction operator (e.g., AND), since 
a constituent should have a unique head and there is no other unique 
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candidate in a coordinate conjunction. However, since a conjunction 
operator would never have the semantic features expected by a rule, 
selectional restrictions applied to the head would not work. 

A possible solution to this problem is to define the semantic features 
of a conjoined phrase to be the intersection of the features of its individual 
conjuncts. This has the attractive feature of enforcing some of the well- 
known parallelism constraints on conjunctions in English (i.e., conjoined 
constituents should be of like kind or similar in some respect). However, 
this solution is again only an approximation of what is required to fully 
model parallelism constraints. For example, it does not consider factors 
of size or complexity of the conjuncts. Further experience with such a 
model will almost certainly uncover still more problems. 

Another example where obtaining the features from the head alone is 
inadequate involves noun phrases in which an adjective modifying the 
head contributes essential information (e.g., obtaining a feature +TOY 
from the phrase “toy gun”). In general, semantic selectional restrictions 
seem to require intensional models of potential referents rather than just 
syntactic structures. (In fact, their applying to such models is really the 
only justification for calling such constraints “semantic.”) In my paper 
“Meaning and Machines” (Woods, 1973c), I discuss more fully the ne- 
cessity for invoking models of semantic reference for correctly dealing 
with such restrictions. 

More seriously, the whole treatment of selectional restrictions as pre- 
requisites for meaningfulness is not quite correct, and the details of 
making selectional restrictions work correctly in various contexts such 
as modal sentences (especially assertions of impossibility) are far from 
worked out. For example, there is nothing wrong with the assertion 
“Rocks cannot love people” even if there seems to be something odd 
about “the rock loved John.” Again, Woods (1973~) discusses such 
problems more fully. 

10.2 Modifier Placement 

Another area in which LUNAR’S solution to a problem was less than 
general is in the interpretation of modifiers that are syntactically ambig- 
uous as to what they modify. For example, in the sentence “Give me the 
average analysis of breccias for all major elements,” there are at least 
three syntactic possibilities for the modifier “for all major elements” (it 
can modify the phrases headed by “breccias,” “analysis,” or  “give”). 
In this case, our understanding of the semantics of the situation tells us 
that it modifies “analysis,” since one can analyze a sample for an ele- 
ment, while “breccias for all major elements” does not make sense. 
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Without a semantic understanding of the situation, the computer has no 
criteria to select which of these three cases to use. 

One of the roles that one might like the syntactic component to play 
in a language understanding system would be to make the appropriate 
grouping of a movable modifier with the phrase it modifies, so that the 
subsequent semantic interpretation rules will find the constituent where 
they would like it to be. However, since there is not always enough 
information available to the parser to make this decision on the basis of 
syntactic information alone, this would mean requiring the parser to 
generate all of the alternatives, from which the semantic interpreter 
would then make the choice. This in turn would mean that the interpreter 
would have to spend effort typing to interpret a wrong parsing, only to 
have to throw it away and start over again on a new one. It would be 
better for the parser to call upon semantic knowledge earlier in the 
process, while it is still trying to enumerate the alternative possible 
locations for the movable modifier. The question it would ask at this 
point would simply be whether a given phrase can take the kind of 
modifier in question, rather than a complete attempt to interpret each 
possibility. 

10.2.1 Selective Modifier Placement 

In general, the ATN grammars used in LUNAR tend to minimize the 
amount of unnecessary case analysis of alternative possible parsings by 
keeping common parts of different alternatives merged until the point in 
the sentence is reached where they make different predictions. At such 
a point, the choice between alternatives is frequently determined by 
having only one of their predictions satisfied. However, one place where 
this kind of factoring does not significantly constrain the branching of 
possibilities is at the end of a constituent where the grammar permits 
optional additional modifiers (e.g., prepositional phrase modifiers at the 
end of a noun phrase, as in the above example). Here. the alternatives 
of continuing to pick up modifiers at the same level and popping to a 
higher level have to be considered separately. If when the alternative of 
popping a constituent is chosen and the construction at the higher level 
can also take the same kind of modifier as the lower constituent, then a 
real ambiguity will result unless some restriction makes the modifier 
compatible with only one of the alternatives. 

The LUNAR parser contains a facility called “selective modifier place- 
ment” for dealing with such “movable modifiers.” When this facility is 
enabled, each time a movable modifier is constructed, the parser returns 
to the level that pushed for it to see if the configuration that caused the 
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push could also have popped to a higher level and, if so, whether that 
higher level could also have pushed for the same thing. It repeats this 
process until it has gathered up all of the levels that could possibly 
(syntactically) use the modifier. It then asks semantic questions to rank 
order the possibilities, choosing the most likely one, and generating 
alternatives for the others. In a classic example, ‘‘.I saw the man in the 
park with a telescope,” the phrase “in the park” could modify either 
“man” or “see,” and “with a telescope” could modify either “park,” 

man,” or “see” (with the possible exception, depending on your dia- 
lect, of forbidding “with a telescope” from modifying ‘‘man” if “in the 
park” is interpreted as modifying “see”). The selective modifier place- 
ment facility chooses the interpretation “see with a telescope” and “man 
in the park” when given information that one can see with an optical 
instrument. Woods (1973a) describes this facility for selective modifier 
placement more fully. 

“ 

10.2.2 Using Misplaced Modifiers 

Although the selective modifier placement facility in LUNAR’S parser 
is probably very close to the right solution to this problem of movable 
modifiers, the mechanism as implemented requires the semantic infor- 
mation that it uses to be organized in a slightly different form from that 
used in the semantic interpretation rules. Rather than duplicate the in- 
formation, LUNAR’S demonstration prototype used a different approach. 
In this sytem, the grammar determined an initial placement of such 
modifiers based solely on what prepositions a given head noun could 
take as modifiers. Subject to this constraint, the movable modifier was 
parsed as modifying the nearest preceding constituent (i.e., as deep in 
the parse tree as premitted by the constraint). Subsequently during in- 
terpretation, if the semantic interpreter failed to find a needed constituent 
at the level it wanted it, it would look for it attached to more deeply 
embedded levels in the tree. 

If this procedure for looking for misplaced modifiers had been handled 
by a general mechanism for looking for misplaced constituents subject to 
appropriate syntactic and semantic guidance, it would provide an alter- 
native approach of comparable generality to selective modifier place- 
ment, raising an interesting set of questions as to the relative advantages 
of the two approaches. In the demonstration prototype, however, it was 
handled by the simple expedient of using disjunctive templates in the 
rules to look for a constituent in each of the places where it might occur. 
Each rule thus had to be individually tailored to look for its needed 
constituents wherever they might occur. Problems were also present in 
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making sure that all modifiers were used by some rule and avoiding 
duplicate use of the same modifier more than once. 

A number of such decisions were made in LUNAR for the expedient 
of getting it working, and are not necessarily of theoretical interest. This 
particular one is mentioned here because of its suggestion of a possible 
way to handle a problem, and also to illustrate the difference between 
solving a problem in general and patching a system up to handle a few 
cases. 

10.3 Multiple Uses of Constituents 

Alluded to above in the discussion of LUNAR’S method of looking for 
misplaced modifiers was the potential for several different rules to use 
the same constituent for different purposes. In general, one expects a 
given modifier to have only one function in a sentence. However, this is 
not always the case. For example, an interesting characteristic of the 
“average” operator is the special use of a prepositional phrase with the 
preposition “over,” which usurps one of the arguments of the function 
being averaged. Specifically, in “the average concentration of silicon 
over the breccias,” the prepositional phrase “over the breccias” is 
clearly an argument to the average function, specifying the class of 
objects over which the average is to be computed. However, it is also 
redundantly specifying the variable that will fill the constituent slot of 
the concentration schema, even though it does not have any of the 
prepositions that would normally specify this slot. The semantic inter- 
pretation framework that the LUNAR system embodies does not antic- 
ipate the simultaneous use of a constituent as a part of two different 
operators in this fashion (although the implemented mechanism does not 
forbid it). 

The rules in the implemented LUNAR system deal with this problem 
(as opposed to solving it) by permitting the prepositional phrase with 
“over” to modify concentration rather than average. This choice was 
made because the average operator is interpretable without a specific 
“over” modifier, whereas the concentration is not interpretable without 
a constituent whose concentration is being measured. However, this 
“solution” leaves us without any constraint that “over” can only occur 
with averages. Consequently, phrases such as “the concentration of 
silicon over S10046” would be acceptable. Such lack of constraint is 
generally not a serious problem in very restricted topic domains and 
with relatively simple sentences, because users are unlikely to use one 
of the unacceptable constructions. However, as the complexity of the 
language increases, especially with the introduction of constructions such 
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as reduced relative clauses and conjunction reduction, the possibility 
increases that some of these unacceptable sequences may be posed as 
partial parsings of an otherwise acceptable sentence, and can either result 
in unintended parsings or long excursions into spurious garden path 
interpretations. 

This kind of ad hoc “solution” to the “average ... over ...” problem is 
typical of the compromises made in many natural language systems, and 
is brought up here to illustrate the wrong way to attack a problem. It 
contrasts strongly with the kinds of general techniques that typify 
LUNAR’S solutions to other problems. 

10.4 Ellipsis 

Possibly the correct solution to the problem of “average ... over ...” is 
one that handles a general class of ellipsis-those cases where an argu- 
ment is omitted because it can be inferred from information available 
elsewhere in a sentence. In this account, the “over” phrase would be an 
argument to “average” and the subordinate “concentration” phrase 
would have an ellipsed specification of the constituent being measured. 

A similar problem with ellipsis occurs in the flight schedules context, 
where sentences such as 

List the departure time from Boston of every TWA flight to Chicago. 

would be interpreted literally as asking for the Boston departure times of 
all TWA flights that go to Chicago, regardless of whether they even go 
through Boston. To express the intended request without ellipsis, the 
user would have to say 

List the departure time from Boston of every TWA flightfrom Boston 
to Chicago. 

As I pointed out in my thesis (Woods, 1967), the information in the 
semantic rules provides the necessary information for the first step in 
treating such ellipsis-the recognition that something is missing. Capi- 
talizing on this, however, requires a rule-matching component that is able 
to find and remember the closest matching rule when no rule matches 
fully, and to provide specifications of the missing pieces to be used by 
some search routine that tries to recover the ellipsis. This latter routine 
would have to examine the rest of the structure of the sentence, and 
perhaps some of the discourse history, to determine if there are appro- 
priate contextually specified fillers to use. Research problems associated 
with such ellipsis have to do with the resolution of alternative possible 
fillers that meet the description, finding potential fillers that are not 
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explicitly mentioned elsewhere but must be inferred, and characterizing 
the regions of the surrounding context that can legitimately provide an- 
tecedents for ellipsis (e.g., can they be extracted out of subordinate 
relative clauses that do not dominate the occurrence of the ellipsis?). 

10.5 Plausibility of Alternative interpretations 

In general, the correct way to handle many of the potential ambiguities 
that arise in English seems to be to construct representations of alter- 
native interpretations, or alternative parts of interpretations, and evaluate 
the alternatives for their relative plausibility. LUNAR does not contain 
such a facility. Instead, it makes the best effort it can to resolve ambi- 
guities, given what it knows about general rules for preferred parsings, 
criteria for preferred interpretations, and specific semantic selectional 
restrictions for nouns and verbs. LUNAR does quite well within these 
constraints in handling a wide variety of constructions. This is successful 
largely because of the limited nature of the subject matter and consequent 
implicit constraints on the kinds of questions and statements that are 
sensible. However, a variety of phenomena seem to require a more 
general plausibility evaluator to choose between alternatives. If one had 
such an evaluator of relative plausibility, the mechanisms used in 
LUNAR would be adequate to generate the necessary alternatives. 

10.6 Anaphoric Reference 
Anaphoric reference is another problem area in which LUNAR’s treat- 

ment does not embody a sufficiently general solution. Every time an 
interpretation is constructed, LUNAR makes entries in a discourse di- 
rectory for each constituent that may be subsequently referred to ana- 
phorically. Each entry consists of the original syntactic structure of a 
phrase, plus a slightly modified form of its semantic interpretation. In 
response to an anaphoric expression such as “it” and “that sample,” 
LUNAR searches this directory for the most recent possible antecedent 
and reuses its previous interpretation. 

LUNAR’s anaphoric reference facility is fairly sophisticated, including 
the possibility to refer to an object that is dependent on another quantified 
object, in which case it will bring forward both quantifiers into the 
interpretation of the new sentence (e.g., “What is the silicon content of 
each volcanic sample?” “What is its magnesium concentration?”). It 
also handles certain cases of anaphora where only part of the intensional 
description of a previous phrase is reused (e.g., “What is the concentra- 
tion of silicon in breccias?” “What is it in volcanics?”). However, this 
facility contains a number of loose ends. One of the most serious is that 
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only the phrases typed in by the user are available for anaphoric refer- 
ence, while the potential antecedents implied by the responses of the 
system are not (responses were usually not expressed in English, and in 
any case were not entered into the discourse directory). Anaphoric ref- 
erence in general contains some very deep problems, some of which are 
revealed in LUNAR. Nash-Webber (1976, 1977), Nash-Webber and Rei- 
ter (1977), and Webber (1978) discuss these problems in detail. 

10.7 Ill-Formed Input and Partial Interpretation 

One of the problems that face a real user of a natural language under- 
standing system is that not everything that he tries to say to the system 
is understandable to it. LUNAR tried to cope with this problem by having 
a grammar sufficiently comprehensive that it would understand every- 
thing a lunar geologist might ask about its data base. The system actually 
came fairly close to doing that. In other systems, such as the SOPHIE 
system of Brown and Burton (1975), this has been achieved even more 
completely. In a limited topic domain, this can be done by systematically 
extending the range of the system’s understanding every time a sentence 
is encountered that is not understood, until eventually a virtual closure 
is obtained. Unfortunately, in less topic-specific systems, it is more 
difficult to reach this kind of closure, and in such cases it would be 
desirable for the system to provide a user with some partial analysis of 
his request to at least help him develop a model of what the machine 
does and does not understand. 

LUNAR contains no facility for such partial understanding, although 
it does have a rudimentary facility to comment about modifiers that it 
does not understand in an otherwise understandable sentence and to 
notify the user of a phrase that it does not understand in a sentence that 
it has managed to parse but cannot interpret. Given the size of its vo- 
cabulary and the extensiveness of its grammar, there are large classes of 
sentences that LUNAR can parse but not understand. For these, 
LUNAR will at least inform the user of the first phrase that it encounters 
that it cannot understand. However, it cannot respond to questions about 
its range of understanding or be of much help to the user in finding out 
whether (and, if so, how) one can rephrase a request to make it under- 
standable. More seriously, if a sentence fails to parse (a less common 
occurrence, but not unusual), LUNAR provides only the cryptic infor- 
mation that it could not parse the input. The reason for this is as follows. 

If the user has used words that are not in its dictionary, LUNAR of 
course informs him of this fact and the problem is clear. If, however, the 
user has used known words in a way that does not parse, all LUNAR 
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knows is that it has tried all of its possible ways to parse the input and 
none of them succeeded. In general, the parser has followed a large 
number of alternative parsing paths, each of which has gotten some 
distance through the input sentence before reaching an inconsistency. 
LUNAR in fact keeps track of each blocked path, and even knows which 
one of them has gotten the farthest through the sentence. However, 
experience has shown that there is no reason to expect this longest partial 
parse path to be correct. In general, the mistake has occurred at  some 
earlier point, after which the grammar has continued to fit words into its 
false hypothesis for some unknown distance before an  inconsistency 
arises. Beyond simply printing out the words used in this longest path 
(letting the user guess what grammatical characteristic of his sentence 
was unknown to the computer) there is no obvious solution to this 
problem. In this respect, a language with a deterministic grammar has an 
advantage over natural English, since there will only be one such parse 
path. In that case, when the parser blocks, there is no question about 
which path was best. 

Note that there is no problem here in handling any particular case or 
anticipated situation. Arbitrary classes of grammatical violations can be 
anticipated and entered into the grammar (usually with an associated 
penalty to keep them from interfering with completely grammatical in- 
terpretations). Such sentences will no longer be a problem. What we are 
concerned with here requires a system with an understanding of its own 
understanding, and an ability to converse with a user about the meaning 
and use of words and constructions. Such a system would be highly 
desirable, but is far from realization at present. The grammar information 
system discussed above, which knows about its own grammar and can 
talk about states and transitions in the grammar, is a long way from being 
able to help a user in this situation. 

One technique from the HWIM speech understanding system (Woods 
rt d., 1976) that could help in such a situation is to find maximally 
consistent islands in the word string using a bidirectional ATN parser 
that can parse any fragment of a correct sentence from the middle out. 
One could then search in the regions where such islands abut or overlap 
for possible transitions that could connect the two. 

A special case of the ungrammatical sentence problem is the case of 
a mistyped word. If the misspelling results in an unknown word, then 
the problem is simple; when LUNAR informs the user of an unknown 
word, it also gives him the opportunity to change it and continue. How- 
ever, if the misspelling results in another legal word, then the system is 
likely to go into the state discussed above, where all parsing paths fail 
and there is little the system can say about what went wrong. In this 
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case, the user can probably find his mistake by checking the sentence he 
has typed, but sometimes a mistake will be subtle and overlooked. Again, 
some of the techniques from the HWIM system could be used here. 
Specifically, HWIM’s dictionary look-up is such that it finds all words 
that are sufficiently similar to the input acoustics and provides multiple 
alternatives with differing scores, depending on how well they agree with 
the input. An identical technique can enumerate possible known words 
that could have misspellings corresponding to the typed input, with scores 
depending on the likelihoods of those misspellings. These alternatives 
would then sit on a shelf to be tried if no parsing using the words as 
typed were found. 

10.8 Intensional Inference 

As discussed previously, the LUNAR prototype deals only with ex- 
tensional inferences, answering questions with quantifiers by explicitly 
enumerating the members of the range and testing propositions for indi- 
vidual members. LUNAR contains a good set of techniques for such 
inference, such as the use of general enumeration functions and smart 
quantifiers. However, although this is a very efficient mode of inference, 
it is not appropriate for many types of questions. The ability to deal with 
more complex types of data entities, even such specialized things as 
descriptions of shape and textural features of the lunar samples, will 
require the use of intensional inference procedures. For this reason, 
LUNAR’s MRL was designed to be compatible with both intensional 
and extensional inference. Intensional inference is necessary for any type 
of question whose answer requires inference from general facts, rather 
than mere retrieval or aggregation of low-level observations. In particu- 
lar, it is necessary in any system that is to accept input of new information 
in anything other than a rigid stylized format. 

Although LUNAR contained some rudimentary facilities for adding 
new lines to its chemical analysis data base and for editing such entries, 
it contained no facility for understanding, storing, or subsequently using 
general facts and information. For example, a sentence such as “All 
samples contain silicon” is interpreted by LUNAR as an assertion to be 
tested and either affirmed or denied. It is not stored as a fact to be used 
subsequently. However, there is nothing in LUNAR’s design that pro- 
hibits such storage of facts. In particular, a simple PRERULE for dec- 
larative sentences with a right-hand side (PRED (STORE (# 0 
SRULES))) could generate interpretations that would store facts in an 
intensional data base (where STORE is assumed to be a function that 
stores facts in an intensional data base). 
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The function STORE could interface to any mechanical inference sys- 
tem to store its argument as an axiom or rule. For example, with a 
resolution theorem proving system such as Green’s QA3 (Green, 1969), 
STORE could transform its argument from its given (extended) predicate 
calculus form into clause form and enter the resulting clauses into an 
indexed data base of axioms. TEST could then be extended to try infer- 
ring the truth of its argument proposition from such axioms either prior 
to, or after, attempting to answer the question extensionally. TEST could 
in fact be made smart enough to decide which mode of inference to try 
first on the basis of characteristics of the proposition being tested. More- 
over, procedures defining individual predicates and functions could also 
call the inference component directly. For example, the predicate 
ABOUT that relates documents to topics could call the inference facility 
to determine whether a document is about a given topic due to one of its 
stored topics subsuming or being subsumed by the one in question. 

The incorporation of intensional inference into the LUNAR framework 
is thus a simple matter of writing a few interfacing functions to add 
axioms to, and call for inferences from, some mechanical inference fa- 
cility (assuming one has the necessary inference system). The problems 
of constructing such an inference facility to efficiently handle the kinds 
of inferences that would generally be required is not trivial, but that is 
another problem beyond the scope of this paper. A number of other 
natural language systems have capabilities for natural language input of 
facts (e.g., Winograd, 1972), but few have very powerful inference facil- 
ities for their subsequent use. 

Among the shifts in emphasis that would probably be made in a se- 
mantic interpretation system to permit extensive intensional inference 
would be increasing attention to the notational structure of intensional 
entities to make them more amenable to inspection by various computer 
programs (as opposed to being perspicuous to a human). The effective- 
ness of the MRL used in LUNAR derives from its overall way of decom- 
posing meanings into constituent parts, but is not particularly sensitive 
to notational variations that preserve this decomposition. When such 
MRL expressions are used as data objects by intensional processors, 
internal notational changes may be desired to facilitate such things as 
indexing facts and rules, relating more general facts to more specific 
ones, and making the inspection of MRL expressions as data objects 
more efficient for the processes that operate on them. In particular, one 
might want to represent the MRL expressions in some network form 
such as that described in Woods (1975b) to make them accessible by 
associative retrieval. 

However, whatever notational variations one might want to adopt for 
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increasing the efficiency of intensional processing, it should not be nec- 
essary, and is certaintly not desirable, to sacrifice the fundamental un- 
derstanding of the semantics of the notation and the kinds of structural 
decompositions of meanings that have been evolved in LUNAR and her 
sister systems. 

11. SyntacticlSemantic Interactions 

A very important question, for which LUNAR’S techniques are clearly 
not the general answer, has to do with the relative roles of syntactic and 
semantic information in sentence understanding. Since this is an issue of 
considerable complexity and confusion, I will devote the remainder of 
this paper to discussing the issues as I currently understand them. 

The question of how syntax and semantics should interact is one that 
has been approached in a variety of ways. Even the systems discussed 
above contain representatives of two extreme approaches. LUNAR ex- 
emplifies one extreme: it produces a complete syntactic representation 
which is only then given to a semantic interpretation component for 
interpretation. TRIPSYS, on the other hand, combines the entire process 
of parsing and semantic interpretation in a grammar that produces se- 
mantic interpretations directly without any intermediate syntactic rep- 
resentation. 

Before proceeding further in this discussion, let me first review the 
role of syntactic information in the process of interpretation: 

11 . I  The Role of Syntactic Structure 

The role of a syntactic parsing in the overall process of interpreting 
the meaning of sentences includes answering such questions as “What 
is the subject noun phrase?”, “What is the main verb of the clause?”, 
“What determiner is used in this noun phrase?”, etc.-all of this is 
necessary input information for the semantic interpretation decisions. 
Parsing is necessary to answer these questions because, in general, the 
answers cannot be determined by mere local tests in the input string 
(such as looking at the following or preceding word). Instead, such an- 
swers must be tentatively hypothesized and then checked out by discov- 
ering whether the given hypothesis is consistent with some complete 
analysis of the sentence. (The existence of “garden path” sentences 
whose initial portion temporarily misleads a reader into a false expecta- 
tion about the meaning are convincing evidence that such decisions can- 
not be made locally.) 

Occasionally, the interpretation of a sentence depends on which of 
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several alternative possible parsings of the sentence the user intends (i.e., 
the sentence is ambiguous). In this case the parser must perform the case 
analysis required to separate the alternative possibilities so they can be 
considered individually. A syntactic parse tree, as used in LUNAR and 
similar systems, represents a concise total description that answers all 
questions about the grouping and interrelationships among words for a 
particular hypothesized parsing of a sentence. As such, it represents an 
example of what R. Bobrow (Bobrow and Brown, 1975) calls a “contin- 
gent knowledge structure,” an intermediate knowledge structure that is 
synthesized from an input to summarize fundamental information from 
which a large class of related questions can then be efficiently inferred. 
In general, there is an advantage to using a separate parsing phase to 
discover and concisely represent these syntactic relationships, since 
many different semantic rules may ask essentially the same questions. 
One would not want to duplicate the processing necessary to answer 
them repeatedly from scratch. 

In addition to providing a concise description of the interrelationships 
among words, the parse trees can serve an additional role by providing 
levels of grouping that will control the semantic interpretation process, 
assigning nodes to each of the phrases that behave as modular constitu- 
ents of the overall semantic interpretation. The semantic interpreter then 
walks this tree structure, assigning interpretations to the nodes corre- 
sponding to phrases that the parser has grouped together. The syntax 
trees assigned by the grammar thus serve as a control structure for the 
semantic interpretation. 

For historical reasons, LUNAR’S grammar constructed syntactic rep- 
resentations as close as possible to those that were advocated at the time 
by transformational linguists as deep structures for English sentences 
(Stockwell et a l . ,  1968). The complex patterns of semantic rules in 
LUNAR and the multiple-phase interpretation are partly mechanisms 
that were designed to provide additional control information that was not 
present in those tree structures. An alternative approach could have been 
to modify the syntactic structures to gain the same effect (see below). 
The approach that was taken provides maximum flexibility for applying 
a set of semantic interpretation rules to an existing grammar. It also 
provides a good pedagogical device for describing interpretation rules 
and strategies, independent of the various syntactic details that stand 
between the actual surface word strings and the parse structures assigned 
by the grammar. However, the use of such powerful rules introduces a 
cost in execution time that would not be required by a system that 
adapted the grammar more to the requirements of semantic interpreta- 
tion. 
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11.2 Grammar Induced Phasing of Interpretation 

As mentioned above, most of the control of multiple phase interpre- 
tation that is done in LUNAR by means of successive calls to the inter- 
preter with different TYPEFLAGS could be handled by having the 
parser assign a separate node for each of the phases of interpretation. If 
this were done, the phasing of interpretation would be governed entirely 
by the structure of the tree. For example, one could have designed a 
grammar to assign a structure to negated sentences that looks something 
like 

S DCL 
NEG 
S NPNPRS10046 

VP V CONTAIN 
NP DET NIL 

N SILICON 
NU SG 

instead of 

S DCL 
NEG 
NP NPR S10046 
VP VCONTAIN 

N P  DET NIL 
N SILICON 
NU SG. 

In such a structure, there is a node in the tree structure to receive the 
interpretation of the constituent unnegated sentence, and thus the sepa- 
rate phasing of the PRERULES and the SRULES used in LUNAR would 
be determined by the structure of the tree. Similarly, noun phrases could 
be structured something like 

NP DET THE 
NU SG 
NOM NOM ADJ N SILICON 

NOM N CONCENTRATION 

NP NPR S10046 
PP PREP IN 
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instead of the structure 

NP DET THE 
ADJ N SILICON 
N CONCENTRATION 
NU SG 
PP PREPIN 

NP NPR 510046 

which is used in the LUNAR grammar. In such a structure, the nested 
NOM phrases would receive the interpretation of the head noun plus 
modifiers by picking up modifiers one at a time. 

It is not immediately obvious, given LUNAR’S separation of syntactic 
and semantic operations, which of the two ways of introducing the phas- 
ing is most efficient. Introducing phasing via syntax requires it to be done 
without the benefit of some of the information that is available at inter- 
pretation time, so that there is the potential of having to generate alter- 
native syntactic representations for the interpreter to later choose be- 
tween. On the other hand, doing it with the semantic interpretation rules 
requires extra machinery in the interpreter (but does not seem to intro- 
duce much extra run-time computation). 

One might argue for the first kind of structure in the above examples 
on syntactic grounds alone. If this is done, then the efficiency issue just  
discussed is simply one more argument. If it turns out that the preferred 
structure for linguistic reasons is also the most efficient for interpretation, 
that would be a nice result. Whether this is true or not, however, is not 
clear to me at present. 

11.3 Semantic Interpretation while Parsing 

The previous discussion illustrates some of the disadvantages of the 
separation of parsing and semantic interpretation phases in the LUNAR 
system. The discussion of placement of movable modifiers illustrates 
another. In general, there are a variety of places during parsing where 
the use of semantic information can provide guidance that is otherwise 
not available, thus limiting the number of alternative hypothetical parse 
paths considered by the parser. It has frequently been argued that per- 
forming semantic interpretation during parsing is more efficient than 
performing it later by virtue of this pruning of parse paths. However, the 
issue is not quite as simple as this argument makes it appear. Against 
this savings, one must weigh the cost of doing semantic interpretation on 
partial parse paths that will eventually fail for syntactic reasons. Which 
of the two approaches is superior in this respect depends on (1) the 
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relative costs of doing semantic versus syntactic tests and (2) which of 
these two sources of knowledge provides the most constraint. Both of 
these factors will vary from one system to another, depending on the 
fluency of their grammars and the scope of their semantics. 

At one point, a switch was inserted in the UNAR grammar that would 
call for the immediate interpretation of an 3 newly formed constituent 
rather than wait for a complete parse tree to be formed. This turned out 
not to have an efficiency advantage. In fact, sentences took longer to 
process (i.e., parse and interpret). This was due in part to the fact that 
LUNAR’S grammar did a good job of selecting the right parse without 
semantic guidance. In such circumstances, semantic interpretations do  
not help to reject incorrect paths. Instead, they merely introduce an extra 
cost due to interpretations performed on partial parse paths that later 
fail. Moreover, given LUNAR’S rules, there are constituents for which 
special interpretations are required by higher constructions (e.g., with 
TYPEFLAG SET or  TOPIC). Since bottom-up interpretation may not 
know how a higher construction will want to interpret a given constituent, 
it must either make as assumption (which may usually be right, but 
occasionally will have to be changed), or else make all possible interpre- 
tations. Either case will require more interpretation than waiting for a 
complete tree to be formed and then doing only the interpretation re- 
quired. All of these considerations make semantic interpretation during 
parsing less desirable unless some positive benefit of early semantic 
guidance outweighs these costs. 

11.4 Top-Down versus Bottom-Up Interpretation 

In the experiment described above, in which LUNAR was modified to 
perform bottom-up interpretation during parsing, the dilemma of handling 
context-dependent interpretations was raised. In those experiments, the 
default assumption was made to interpret every noun phrase with TY- 
PEFLAG NIL during the bottom-up phase. In cases where a higher 
construction required some other interpretation, reinterpretation was 
called for at that point in the usual top-down mode. Since LUNAR 
maintains a record of previous interpretations that have been done on a 
node to avoid repeating an interpretation, it was possible to efficiently 
use interpretations that were made bottom-up when they happened to be 
the kind required, while performaing new ones if needed. 

An alternative approach to this problem of bottom-up interpretation in 
context is to make a default interpretation that preserves enough infor- 
mation so that it can be modified to fit unexpected contexts without 
actually having to redo the interpretation. This would be similar to the 
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kind of thing that SETGEN (in the right-hand side of the D:SET rule) 
does to the quantifiers it picks up to turn them into UNIONS. In the 
HERMES grammar (Ash et af., 1977), R. Bobrow uses this approach, 
which he calls “coercion” (intuitively, forcing the interpretation of a 
constituent to be the kind that is expected). In  this case, when the higher 
construction wants the interpretation of a constituent in some mode other 
than the one that has been already done, it asks whether the existing one 
can be coerced into the kind that it wants rather than trying to reinterpret 
the original phrase. 

Many of these questions of top-down versus bottom-up interpretation, 
syntax-only parsing before semantic interpretation or vice versa (or both 
together), do not have clear cut answers. In general, there is a tension 
between doing work on a given portion of a sentence in a way that is 
context free (so that the work can be shared by different alternative 
hypotheses at a higher level) and doing it in the context of a specific 
hypothesis (so that the most leverage can be gained from that hypothesis 
to prune the alternatives at the lower level). It is not yet clear whether 
one of the extremes or some intermediate position is optimal. 

11.5 Pragmatic Grammars  
One thing that should be borne in mind when discussing the role of 

grammars is that it is not necessary that the grammar characterize exactly 
those sentences that a grammarian would consider correct. The formal 
grammar used by a system can characterize sentences as the user would 
be likely to say them, including sentences that a grammarian might call 
ungrammatical. For example, LUNAR accepts isolated noun phrases as 
acceptable utterances, implicitly governed by an operator “give me.” 

In the classical division of problems of meaning into the areas of 
syntax, semantics, and pragmatics, the latter term is used to denote those 
aspects of meaning determined not by general semantic rules, but as 
aspects of the current situation, one’s knowledge of the speaker, etc. For 
example, in situations of irony, a speaker says exactly the opposite of 
what he means. Likewise, certain apparent questions should in fact be 
interpreted as commands or as other requests (e.g., “Do you have the 
time?” is usually a “polite” way of asking “What time is it?”). More- 
over, certain ungrammatical utterances nevertheless have a meaning that 
can be inferred from context. In general, the ultimate product of language 
understanding is the pragmatic interpretation of the utterance in context. 
This interpretation, while not necessarily requiring a syntactically and 
semantically correct input sentence, nevertheless depends on an under- 
standing of normal syntax and semantics. 
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In LUNAR, there is no systematic treatment of pragmantic issues, 
although in some cases, pragmatic considerations as well as semantic 
ones were used in formulating its interpretation rules. For example, the 
rule that interprets the head “analysis,” when it finds no specification of 
the elements to be measured, makes a default assumption that the major 
elements are intended. This is due to the pragmatic fact that (according 
to our geologist informant) this is what a geologist would want to see if 
he made such a request, not because that is what the request actually 
means. In this way, LUNAR can handle a small number of anticipated 
pragmantic situations directly in its rules. 

In TRIPSYS, a small step toward including pragmatics in the grammar 
was taken. The TRIPSYS grammar takes into account not only semantic 
information such as class membership and selectional restrictions of 
words, but also pragmatic information. This includes factual world knowl- 
edge such as  what cities are in which states, actual first and last names 
of people, and discourse history information, such as whether appropriate 
referents exist for anaphoric expressions. The TRIPSYS system is only 
beginning to explore these issues, and has not begun to develop a general 
system for pragmatic interpretation. Much more work remains to be done 
in this area, and interest in it seems to be building as our mastery of the 
more basic syntactic and semantic issues matures. 

The “pragmatic” grammar of TRIPSYS is only one exploration of a 
philosophy of combined syntactic and semantic grammars that has arisen 
independently in several places. Other similar uses of ATN or ATN-like 
grammars combining syntactic and semantic (and possibly pragmatic) 
information are the “Semantic Grammars” of Burton (1976), the “Per- 
formance Grammars” of Robinson (1975), the SHRDLU system of Win- 
ograd (1972), and the HERMES grammar of R. Bobrow (Ash et d., 
1977). 

11.6 Semantic Interpretation in the Grammar 

In separating parsing and semantic interpretation into two separate 
processes (whether performed concurrently or  in separate phases), 
LUNAR gains several advantages and also several disadvantages. On 
the positive side, one obtains a syntactic characterization of a sizable 
subset of English that is independent of a specific topic domain and hence 
transferable to other applications. All of the domain-specific information 
is contained in the dictionaries and the semantic interpretation rules. On 
the other hand, there is a conceptual expense in determining what syn- 
tactic structure to use for many of the less standard constructions. One 
would like such structures to be somehow motivated by linguistic prin- 
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ciples and yet, at the same time, have them facilitate subsequent inter- 
pretation. In many cases, the desired interpretation is more clear to the 
grammar designer than is a suitable syntactic representation. In a number 
of situations, such as those discussed previously for handling wh-ques- 
tions with conjunction reduction and for handling averages, I have found 
it desirable to change what had initially seemed a suitable syntactic 
representation in order to facilitate subsequent semantic interpretation. 
If semantic interpretations were to be produced directly by the grammar 
instead of using an intermediate syntactic representation, then such prob- 
lems would be avoided. 

The integration of semantic interpretation rules into the grammar could 
be done in a number of ways, one of which would be to develop a rule 
compiler that would use the templates of rules such as LUNAR’S to 
determine where in the grammar to insert the rule. Another would be to 
write the interpretation rules into the grammar in the first place. This 
latter is the approach that is taken in the TRIPSYS system. It seems 
clearly an appropriate thing to do for such rules as the PRERULES for 
sentences and the DRULES for noun phrases, where the principal infor- 
mation used is largely syntactic. For the equivalent of SRULES, 
NRULES, and RRULES, writing specific rules into the grammar would 
make the grammar itself more topic-specific than one might like. How- 
ever, writing generalized rules that apply to large classes of words, using 
information from their dictionary entries for word-specific information 
such as case frames, selectional restrictions, permitted prepositions, and 
corresponding MRL translations, should produce a grammar that is rel- 
atively topic-independent. This is the approach taken by Robinson (1975) 
and by R.  Bobrow (Ash et ul., 1977). 

Integrating semantic interpretation with a grammar is not an obvious 
overall improvement, since by doing so one gives up features as well as 
gaining them. For example, as discussed earlier the “advantage” of using 
semantic interpretation to prune parse paths is not always realized. How- 
ever, there are some other efficiencies of the combined syntacticheman- 
tic grammars that have nothing to do with pruning. One of these is the 
avoidance of pattern-matching. 

One of the costs of the separate semantic interpretation phase used in 
LUNAR is the cost of pattern-matching the rules. Much of this effort is 
redundant since the various pieces of information that are accessed by 
the rules were mostly available in registers during the parsing process. 
From here they were packaged up by actions in the grammar into the 
parse tree structures that are passed on to the interpreter. The pattern- 
matching in the interpreter recovers these bindings so that the right-hand 
side of the rule can use them. If the right-hand side schema of the rule 
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could be executed while these bindings were still available during the 
parsing process, considerable computation could be avoided. Moreover, 
much of the syntactic information that is checked in the rules is implicitly 
available in the states of the grammar by virtue of the fact that the parser 
has reached that state (and more of that information could be put into 
the states if desired). Thus, in many cases, much of the testing that goes 
on in the pattern-matching of rules would be avoided if the right-hand 
side of the rule, paired with whatever semantic tests are required, were 
inserted as an action at the appropriate points in the grammar. 

For example, at certain points in the parsing, the grammar would know 
that it had enough information to construct the basic quantifier implied 
by the determiner and number of a noun phrase. At a later point, it would 
know all of the various modifiers that are being applied to the head noun. 
As the necessary pieces arrive, the interpretation can be constructed 
incrementally. 

The effectiveness of this kind of combined parserlinterpreter depends 
partly on the discovery that the kinds of associations of REFS to con- 
stituent nodes that are made by LUNAR’S rules are usually references 
to direct constituents of the node being interpreted. Thus, they corre- 
spond closely to the constituents that are being held in the registers by 
the ATN grammar during its parsing. The original semantic rule format 
was designed to compensate for rather large potential mismatches be- 
tween the structure that a grammar assigns and the structure that the 
interpreter would like to have (since it was intended to be a general 
facility applicable to any reasonable grammar). When a grammar is spe- 
cifically designed to support the kinds of structures required by the 
interpreter, this very general “impedance matching” capability of the 
rules is not required. 

Thus, when fully integrated with the parsing process i n  an ATN gram- 
mar, the process of semantic interpretation requires fewer computation 
steps than when it is done later in a separate phase. This clearly has a 
bearing on the previous discussion of the relative costs of syntactic and 
semantic processing. Other advantages of this kind of integrated parsing 
and interpretation process is that the single nondeterminism mechanism 
already present in the parser can be used to handle alternative interpre- 
tations of a given syntactic structure, without requiring a separate facility 
for finding and handling multiple rule matches. This not only eliminates 
extra machinery from the system, but appears to be more efficient. It 
also permits a more flexible interaction between the ranking of alternative 
syntactic choices and the ranking of alternative choices in semantic in- 
terpretation. 

A disadvantage of this integrated approach is that the combined syn- 
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tactichemantic grammar is much more domain-specific and less trans- 
portable unless clear principles for separating domain-specific from gen- 
eral knowledge are followed. Moreover, the fact that a given semantic 
constituent can be found in different places by different arcs in the 
grammar seems to require separate consideration of the same semantic 
operations at different places in the grammar. 

11.7 Generating Quantifiers while Parsing 

The generation of separate SEM's and QUANT's when performing 
interpretation while parsing appears to complicate the integration of the 
semantic interpretation into the grammar, but in fact is not difficult. One 
can stipulate that any constituent parsed will return a structure that 
contains both a SEM and a QUANT as currently assigned by the INTERP 
function in LUNAR. The parsing at the next higher level in the grammar 
will then accumulate the separate QUANTs from each of the constituents 
that it consumes, give them to a SORTQUANT function to determine 
the order of nesting, and construct the interpretation of the phrase being 
parsed out of the SEM's of the constituent phrases. All of the quantifier 
passing operations described previously can be carried out during the 
parsing with little difficulty. 

One advantage of this procedure is that the job of SORTQUANT is 
simplified by the fact that the quantifiers will be given to it in surface 
structure order rather than in some order determined by the deep struc- 
ture assigned by the grammar. LUNAR'S SORTQUANT function has to 
essentially reconstruct surface word order. 

12. Conclusions 

The LUNAR prototype marks a significant step in the direction of 
fluent natural language understanding. Within the range of its data base, 
the system permits a scientist to ask questions and request computations 
in his own natural English in much the same form as they arise to him 
(or at least in much the same form that he would use to communicate 
them to another human being). However, although the LUNAR proto- 
type exhibits many desired qualities, it is still far from fully achieving its 
goal. The knowledge that the current system contains about the use of 
English and the corresponding meanings of words and phrases is very 
limited outside the range of those English constructions that pertain to 
the system's data base of chemical analysis data. This data base has a 
very simple structure; indeed it was chosen as  an initial data base because 
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its structure was simple and straightforward. For less restricted appli- 
cations, such systems will require much greater sophistication in both 
the linguistic processing and the underlying semantic representations and 
inference mechanisms. 

In this paper, I have presented some of the solutions that were devel- 
oped in LUNAR (and several related systems) for handling a variety of 
problems in semantic interpretation, especially in the interpretation of 
quantifiers. These include a meaning representation language (MRL) that 
facilitates the uniform interpretation of a wide variety of linguistic con- 
structions, the formalization of meanings in terms of procedures that 
define truth conditions and carry out actions, efficient techniques for 
performing extensional inference, techniques for organizing and applying 
semantic rules to construct meaning representations, and techniques for 
generating higher quantifiers during interpretation. These latter include 
methods for determining the appropriate relative scopes of quantifiers 
and their interactions with negation, and for handling their interactions 
with operators such as “average.” Other techniques are described for 
post-interpretive query optimization and for displaying quantifier de- 
pendencies in output. 

I have also discussed a number of future directions for research in 
natural language understanding, including some questions of the proper 
relationship between syntax and semantics, the partial understanding of 
“ungrammatical” sentences, and the role of pragmatics. In the first area 
especially, I have discussed a number of advantages and disadvantages 
of performing semantic interpretation during the parsing process, and 
some aspects of the problem of separating domain specific from general 
knowledge. 

As discussed in several places in the paper, there are a variety of loose 
ends and open problems still to be solved in the areas of parsing and 
semantic interpretation. However, even in the four systems discussed 
here, it is apparent that as the system becomes more ambitious and 
extensive in its scope of knowledge, the need for pragmatic considera- 
tions in selecting interpretations becomes increasingly important. I be- 
lieve that, as a result of increasing understanding of the syntactic and 
semantic issues derived from explorations such as the LUNAR system, 
the field of computational linguistics is now reaching a sufficient degree 
of sophistication to make progress in a more general treatment of prag- 
matic issues. In doing so, it will become much more concerned with 
general issues of plausible inference and natural deduction, moving the 
field of language understanding in the direction of some of the other 
traditional areas of artificial intelligence research, such as mechanical 
inference and problem solving. 
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