
ADVANCES IN COMPUTERS . VOL . 17

Semantics and Quantification in
Natural Language Question Answering

W . A . WOODS

Bolt Beranek and Newman Inc .
Cambridge. Massachusetts

I . Introduction 2
2 . Historical Context 4

2.1 Airlines Flight Schedules 4
2.2 Answering Questions about ATN Grammars 6
2.3 The LUNAR System 6
2.4 TRIPSYS 8

3 . Overview . 8
3.1 Structure of the LUNAR System 9
3.2 Semantics in LUNAR 10

4 . The Meaning Representation Language 11
4.1 Designators 11
4.2 Propositions 12
4.3 Commands 12
4.4 Quantification 12
4.5 Specification of the MRL Syntax 13
4.6 ProcedurallDeclarative Duality 14
4.7 Opaque Contexts 15
4.8 Restricted Class Quantification 17
4.9 Nonstandard Quantifiers 17
4.10 Functions and Classes 20
4.11 Unanticipated Requests 20

5 . The Semantics of the Notation 21
5.1 Procedural Semantics 21
5.2 Enumeration Functions 21
5.3 Quantified Commands 23

6 . Semantic Interpretation 24
6.1 Complications Due to Quantifiers 26
6.2 Problems with an Alternative Approach 26
6.3 The Structure of Semantic Rules 27
6.4 Relationship of Rules to Syntax 29
6.5 Organization of the Semantic Interpreter 30
6.6 Organization of Rules 33
6.7 The Generation of Quantifiers 35

7 . Problems of Interpretation 37
7.1 The Order of Quantifier Nesting 37
7.2 Interaction of Negations with Quantifiers 38

1

CopyrightD 1978 by Academic Press. Inc .
All rights of reproduction in any form reserved .

ISBN 612-012117-4

2 W . A . WOODS

7.3
7.4 Relative Clauses
7.5 Other Types of Modifiers
7.6 Averages and Quantifiers
7.7 Short Scope/Broad Scope Distinctions . .
7.8 Wh Questions

8 . Post-Interpretive Processing
8.1 Smart Quantifiers
8.2 Printing Quantifier Dependencies . . .

10 . Loose Ends, Problems. and Future Directions .
10.1 Approximate Solutions
10.2 Modifier Placement
10.3 Multiple Uses of Constituents
10.4 Ellipsis
10.5 Plausibility of Alternative Interpretations .
10.6 Anaphoric Reference
10.7 Ill-Formed Input and Partial Interpretation
10.8 Intensional Inference

I 1 . Syntactic/Semantic Interactions
I I . I The Role of Syntactic Structure
11.2 Grammar Induced Phasing of Interpretation
11.3 Semantic Interpretation while Parsing . .
1 I . 4 Top-Down versus Bottom-Up Interpretation
I I . 5 Pragmatic Grammars
11.6 Semantic Interpretation in the Grammar .
11.7 Generating Quantifiers while Parsing . .

12 . Conclusions
References

Functional Nesting and Quantifier Reversal

9 . An Example

. 39

. 41

. 42

. 44

. 45

. 47

. 54

. 55

. 57

. 58

. 64

. 64

. 65

. 68

. 69

. 70

. 70

. 71

. 73

. 75

. 75

. 77

. 78

. 79

. 80

. 81

. 84

. 84

. 86

1 . Introduction

The history of communication between man and machines has followed
a path of increasing provision for the convenience and ease of commu-
nication on the part of the human . From raw binary and octal numeric
machine languages. through various symbolic assembly. scientific. busi-
ness and higher level languages. programming languages have increas-
ingly adopted notations that are more natural and meaningful to a human
user . The important characteristic of this trend is the elevation of the
level at which instructions are specified from the low level details of the
machine operations to high level descriptions of the task to be done.
leaving out details that can be tilled in by the computer . The ideal product
of such continued evolution would be a system in which the user specifies
what he wants done in a language that is so natural that negligible mental
effort is required to recast the specification from the form in which he
formulates it to that which the machine requires . The logical choice for

NATURAL LANGUAGE QUESTION ANSWERING 3

such a language is the person’s own natural language (which in this paper
I will assume to be English).

For a naive, inexperienced user, almost every transaction with current
computer systems requires considerable mental effort deciding how to
express the request in the machine’s language. Moreover, even for tech-
nical specialists who deal with a computer constantly, there is a distinc-
tion between the things that they do often and remember well, and many
other things that require consulting a manual and/or much conscious
thought in order to determine the correct machine “incantation” to
achieve the desired effect. Thus, whether a user is experienced or naive,
and whether he is a frequent or occasional user, there arise occasions
where he knows what he wants the machine to do and can express it in
natural language, but does not know exactly how to express it to the
machine. A facility for machine understanding of natural language could
greatly improve the efficiency of expression in such situations-both in
speed and convenience, and in decreased likelihood of error.

For a number of years, I have been pursuing a long range research
objective of making such communication possible between a man and a
machine. During this period, my colleagues and I1 have constructed
several natural language question-answering systems and developed a
few techniques for solving some of the problems that arise. In this paper,
I will present some of those techniques, focusing on the problem of
handling natural quantification as it occurs in English. As an organizing
principle, I will present the ideas in a roughly historical order, with
commentary on the factors leading to the selection of various notations
and algorithms, on limitations that have been discovered as a result of
experience, and on directions in which solutions lie.

Among the systems that I will use for examples are a flight schedules
question-answering system (Woods, 1967, 1968), a system. to ask ques-
tions about an augmented transition network (ATN) grammar (not pre-
viously published), the LUNAR system, which answers questions about
the chemical analyses of the Apollo 11 moon rocks (Woods et ai., 1972;
Woods, 1973b), and a system for natural language trip planning and
budget management (Woods et al., 1976).

Some of the techniques used in these systems, especially the use of
the ATN grammar formalism (Woods, 1969, 1970, 1973a), have become
widely known and are now’ being used in many different systems and
applications. However, other details, including the method of performing
semantic interpretation, the treatment of quantification and anaphoric

Principal contributors to one or more of the systems described here include Madeleine
Bates, Bertram Bruce, Ronald Kaplan, and Bonnie Nash-Webber (now Webber).

4 W. A. WOODS

reference, and several other problems, have not been adequately de-
scribed in accessible publications.

This paper is intended to be a discussion of a set of techniques, the
problems they solve, and the relative advantages and disadvantages of
several alternative approaches. Because of the length of the presentation,
no attempt has been made to survey the field or give an exhaustive
comparison of these techniques to those of other researchers. In general,
most other systems are not sufficiently formalized at a conceptual level
that such comparisons can be made on the basis of published information.
In some cases, the mechanisms described here can be taken as models
of what is being done in other systems. Certainly, the general notion of
computing a representation of the meaning of a phrase from representa-
tions of the meanings of its constituents by means of a rule is sufficiently
general to model virtually any semantic interpretation process. The de-
tails of how most systems handle such problems as the nesting of multiple
quantification, however, are difficult to fathom. Hopefully the presenta-
tion here and the associated discussion will enable the reader to evaluate
for himself, with some degree of discrimination, the capabilities of other
systems.

2. Historical Context

2.1 Airlines Flight Schedules

Airlines flight schedules was the focusing context for a gedanken sys-
tem for semantic interpretation that I developed as my Ph.D. thesis at
Harvard University (Woods, 1967). In that thesis, I was concerned with
the problem of “semantic interpretation”-making the transition from a
syntactic analysis of input questions (such as could be produced by
parsing with a formal grammar of English) to a concrete specification of
what the computer was to do to answer the question. Prior to that time,
this problem had usually been attacked by developing a set of structural
conventions for storing answers in the data base and transforming the
input questions (frequently by ad hoc procedures) into patterns that could
be matched against that data base. Simmons (1965) presents a survey of
the state of the art of the field at that time..

In many of the approaches existing at that time, the entire process of
semantic interpretation was built on particular assumptions about the
structure of the data base. I was searching for a method of semantic
interpretation that would be independent of particular assumptions about
data base structure and, in particular, would permit a single language

NATURAL LANGUAGE QUESTION ANSWERING 5

understanding system to talk to many different data bases and permit the
specification of requests whose answers required the integration of in-
formation from several different data bases. In searching for such an
approach, I looked more to the philosophy of language and the study of
meaning than to data structures and data base design.

The method I developed was essentially an interpretation of Carnap’s
notion of truth conditions (Carnap, 1964a). I chose to represent those
truth conditions by formal procedures that could be executed by a ma-
chine. The representation that I used for expressing meanings was at
once a notational variant of the standard predicate calculus notation and
also a representation of an executable procedure. The ultimate definition
of the meanings of expressions in this notation were the procedures that
they would execute to determine the truth of propositions, compute the
answers to questions, and carry out commands. This notion, which I
referred to as “procedural semantics,” picks up the chain of semantic
Specification from the philosophers at the level of abstract truth condi-
tions, and carries it to a formal specification of those truth conditions as
procedures in a computer language.

The idea of procedural semantics has since had considerable success
as an engineering technique for constructing natural language understand-
ing systems, and has also developed somewhat as a theory of meaning.
In my paper “Meaning and Machines” (Woods, 1973c), I discuss some
of the more theoretical issues of the adquacy of procedural semantics as
a theory of meaning.

The flight schedules application initially served to focus the issues on
particular meanings of particular sentences. The application assumed a
data base essentially the same as the information contained in the Official
Airline Guide (OAG, 1966)-that is, a list of flights, their departure and
arrival times from different airports, their flight numbers and airlines,
number of stops, whether they serve meals, etc. Specific questions were
interpreted as requesting operations to be performed on the tables that
make up this data base to compute answers.

The semantic interpretation system presented in my thesis was sub-
sequently implemented for this application with an ATN grammar of
English to provide syntax trees for interpretation, but without an actual
data base. The system produced formal semantic interpretations for ques-
tions such as:

“What flights go from Boston to Washington?”
“Is there a flight to Washington before 8: 00 A.M.?”
“Do they serve lunch on the 11 : 00 A.M. flight to Toronto?”

6 W. A. WOODS

2.2 Answering Questions about ATN Grammars
To prove the point that the semantic interpretation system used in the

flight schedules domain was in fact general for arbitrary data bases and
independent of the detailed structure of the data base, immediately after
completing that system, I looked for another data base to which I could
apply the method. I wanted a data base that had not been designed to
satisfy any assumptions about the method of question interpretation to
be used. The most convenient such data base that I had at hand was the
data structure for the ATN grammar that was being used by the system
to parse its input sentences. This data base had a structure that was
intended to support the parser, and had not been designed with any
forethought to using it as a data base for question answering.

An ATN grammar, viewed as a data base, conceptually consists of a
set of named states with arcs connecting them, corresponding to transi-
tions that can be made in the course of parsing. Arcs connecting states
are of several kinds depending on what, if anything, they consume from
the input string when they are used to make a transition. For example,
a word arc consumes a single word from the input, a push arc consumes
a constituent phrase of the type pushed for, and a jump arc consumes no
input but merely makes a state transition (see Woods, 1970, 1973a, 197Sa,
for further discussion of ATN grammars). These states and arcs consti-
tute the data base entities about which questions may be asked.

In addition to the entities that actually exist as data objects in the
internal structure for the grammar, there are some other important objects
that exist conceptually but are not explicit in the grammar. The most
important such entity is a path. A path is a sequence of arcs that connect
to each other in the order in which they could be taken in the parsing of
a sentence. Although paths are implicit in the grammar, they are not
explicit in the data structure, i.e., there is no internal data object that
can be pointed to in the grammar that corresponds to a path. Neverthe-
less, one should be able to talk about paths and ask questions about
them. The techniques I will describe can handle such entities.

Examples of the kinds of sentences this “grammar information sys-
tem” could deal with are

“Is there a jump arc from state S/ to S/NP?”
“How many arcs leave state NP/?”
“How many nonlooping paths connect state S/ with WPOP?”
“Show me all arcs entering state S/VP.”

2.3 The LUNAR System

The LUNAR system (Woods et al. , 1972; Woods, 1973b) was originally
developed with support from the NASA Manned Spacecraft Center as a

NATURAL LANGUAGE QUESTION ANSWERING 7

research prototype for a system to enable a lunar geologist to conven-
iently access, compare, and evaluate the chemical analysis data on lunar
rock and soil composition that was accumulating as a result of the Apollo
moon missions. The target of the research was to develop a natural
language understanding facility sufficiently natural and complete that the
task of selecting the wording for a request would require negligible effort
for the geologist user.

The application envisaged was a system that would be accessible to
geologists anywhere in the country by teletype connections and would
enable them to access the NASA data base without having to learn either
the programming language in which the system was implemented or the
formats and conventions of the data base representations. For example,
the geologist should be able to ask questions such as “What is the average
concentration of aluminum in high-alkali rocks?” without having to know
that aluminum was conventionally represented in the data base as
AL203, that the high-alkali rocks (also known as “volcanics” or “fine-
grained igneous”) were conventionally referred to as TYPEAS in the
data base, nor any details such as the name of the file on which the data
was stored, the names of the fields in the data records, or any of a myriad
of other details normally required to use a data base system.

To a substantial extent, such a capability was developed, although
never fully put to the test of real operational use. In a demonstration of
a preliminary version of the system in 1971 (Woods, 1973b), 78% of the
questions asked of the system were understood and answered correctly,
and another 12% failed due to trivial clerical errors such as dictionary
coding errors in the not fully debugged system. Only 10% of the questions
failed because of significant parsing or semantic interpretation problems.
Although the requests entered into the system were restricted to ques-
tions that were in fact about the contents of the data base, and compar-
atives (which were not handled at that time) were excluded, the requests
were otherwise freely expressed in natural English without any prior
instructions as to phrasing and were typed into the system exactly as
they were asked.

The LUNAR system allowed a user to ask questions, compute aver-
ages and ratios, and make listings of selected subsets of the data. One
could also retrieve references from a keyphrase index and make changes
to the data base. The system permitted the user to easily compare the
measurements of different researchers, compare the concentrations of
elements or isotopes in different types of samples or in different phases
of a sample, compute averages over various classes of samples, compute
ratios of two constituents of a sample, etc., all in straightforward natural
English.

W. A. WOODS

Examples of requests understood by the system are
“Give me all lunar samples with magnetite.”
“In which samples has apatite been identified?”
“What is the specific activity of A126 in soil?”
“Analyses of strontium in plagioclase.”
“What are the plag analyses for breccias?”
“What is the average concentration of olivine in breccias?”
“What is the average age of the basalts?”
“What is the average potassiudrubidium ratio in basalts?”
“In which breccias is the average concentration of titanium greater

than 6 percent?”

2.4 TRIPSYS

TRIPSYS is a system that was developed as the context for a research
project in continuous speech understanding (Woods ef al., 1976). The
overall system of which it was a part was called HWIM (for “Hear What
I Mean”). TRIPSY S understands and answers questions about planned
and taken trips, travel budgets and their status, costs of various modes
of transportation to various places, per diems in various places, confer-
ences and other events for which trips might be taken, people in an
organization, the contracts they work on, the travel budgets of those
contracts, and a variety of other information that is useful for planning
trips and managing travel budgets. It is intended to be a small-scale
example of a general management problem. TRIPSYS also permits some
natural language entry of information into the data base, and knows how
to prompt the user for additional information that was not given volun-
tarily. Examples of the kinds of requests that TRIPSYS was designed to
handle are

“Plan a trip for two people to San Diego to attend the ASA meeting.”
“Estimate the cost of that trip.”
“Is there any money left in the Speech budget?”

3. Overview

Since the LUNAR system is the most fully developed and most widely
known of the above systems, I will use it as the principal focus throughout
this paper. A brief overview of the LUNAR system was presented in the
1973 National Computer Conference (Woods, 1973b), and an extensive
technical report documenting the system was produced (Woods ef al.,
1972). However, there has been no generally available document that

NATURAL LANGUAGE QUESTION ANSWERING 9

gives a sufficiently complete picture of the capabilities of the system and
how it works. Consequently, I will first give a brief introduction to the
structure of the system as a whole, and then proceed to relatively detailed
accounts of some of the interpretation problems that were solved. Ex-
amples from the other three systems will be used where they are more
self-explanatory or more clearly illustrate a principle. Where the other
systems differ in structure from the LUNAR system, that will be pointed
out.

3.1 St ruc tu re of t h e LUNAR System

The LUNAR system consists of three principal components: a general
purpose grammar and parser for a large subset of natural English, a rule-
driven semantic interpretation component using pattern + action rules
for transforming a syntactic representation of an input sentence into a
representation of what it means, and a data base retrieval and inference
component that stores and manipulates the data base and performs com-
putations on it. The first two components constitute a language under-
standing component that transforms an input English sentence into a
disposable program for carrying out its intent (answering a question or
making some change to the data base). The third component executes
such programs against the data base to determine the answer to queries
and to effect changes in the data base.

The system contains a dictionary of approximately 3500 words, a gram-
mar for a fairly extensive subset of natural English, and two data bases:
a table of chemical analyses with 13,000 entries, and a topic index to
documents with approximately 10,000 postings. The system also contains
facilities for morphological analysis of regularly inflected words, for main-
taining a discourse directory of possible antecedents for pronouns and
other anaphoric expressions, and for determining how much and what
information to display in response to a request.

The grammar used by the parsing component of the system is an
augmented transition network (ATN). The ATN grammar model has been
relatively well documented elsewhere (Woods, 1970, 1973a), so I will not
go into detail here describing it, except to point out that it produces
syntactic tree structures comparable to the “deep structures” assigned
by a Chomsky type transformational grammar, vintage 1965 (Chomsky,
1965). Likewise, I will not go into much detail describing the inner
workings of the data base inference and retrieval component, except to
describe the semantics of the formal meaning representation language
and discuss some of its advantages. What I will describe here are the
problems of semantic interpretation that were handled by the system.

10 W. A. WOODS

All of the systems mentioned in Section 2 share this same basic struc-
ture with the following exceptions:

1) The airline flight schedules problem was implemented up through
the parsing and interpretation stage, but was never coupled to a real data
base. This system was implemented solely to validate the formal semantic
interpretation procedure.

2) The TRIPSYS system does not construct a separate syntactic tree
structure to be given to a semantic interpreter, but rather the ATN
grammar builds semantic interpretations directly as its output represen-
tation.

3.2 Semantics in LUNAR

A semantic specification of a natural language consists of essentially
three parts:

a) a meaning representation language (MRL)-a notation for semantic
representation for the meanings of sentences,

b) a specification of the semantics of the MRL notation, i.e., a spec-
ification of what its expressions mean, and

c) a semantic interpretation procedure, i.e., a procedure to construct
the appropriate semantic representations for a given natural language
sentence.

Accordingly, the semantic framework of the LUNAR system consists
of three parts: a semantic notation in which to represent the meanings of
sentences, a specification of the semantics of this notation (by means of
formal procedures), and a procedure for assigning representations in the
notation to input sentences.

In previous writings on LUNAR, I have referred to the semantic
notation. as a query language, but I will refer to it here, following a
currently more popular terminology as a “meaning representation lan-
guage” or MRL. To represent expressions in the MRL, I will use the so-
called “Cambridge Polish” notation in wich the application of an operator
to its arguments is represented with the operator preceding its operands
and the entire group surrounded by parentheses. This notation places the
operator in a standard position independent of the number of arguments
it takes and uses the parentheses to indicate scoping of operators rather
than depending on a fixed degree of the operator as in the “ordinary”
Polish prefix notation (thus facilitating operators that take a variable
number of arguments). Cambridge Polish notation is the notation used
for the S-expressions of the programming language LISP (Bobrow et al.,
1968), in which LUNAR is implemented.

NATURAL LANGUAGE QUESTION ANSWERING 11

Occasionally, the notations used for illustration will be slightly simpli-
fied from the form actually used in LUNAR to avoid confusion. For
example, the DATALINE function used in LUNAR actually takes an
additional argument for a data file that is omitted here.

4. The Meaning Representation Language

There are a number of requirements for a meaning representation
language, but the most important ones are these:

a) It must be capable of representing precisely, formally, and unam-
biguously any interpretation that a human reader can place on a sentence.

b) It should facilitate an algorithmic translation from English senten-
ces into their corresponding semantic representations.

c) It should facilitate subsequent intelligent processing of the resulting
interpretation.

The LUNAR MRL consists of an extended notational variant of the
ordinary predicate calculus notation and contains essentially three kinds
of constructions:

0 designators, which name or denote objects (or classes of objects)
in the database,

0 propositions, which correspond to statements that can be either
true or false in the data base, and

0 commands, which initiate and carry out actions.

4.1 Designators

Designators come in two varieties-individual specifiers and class spe-
cifiers. Individual specifiers correspond to proper nouns and variables.
For example, S10046 is a designator for a particular sample, OLIV is a
designator for a certain mineral (olivine), and X3 can be a variable
denoting any type of object in the data base. Class specifiers are used to
denote classes of individuals over which quantification can range. They
consist of the name of an enumeration function for the class plus possible
arguments. For example, (SEQ TYPECS) is a specification of the class
of type C rocks (i.e., breccias) and (DATALINE S10046 OVERALL
OLIV) is a specification of the set of lines of a table of chemical analyses
corresponding to analyses of sample S10046 for the overall concentration
of olivine.

12 W. A. WOODS

4.2 Propositions

Elementary propositions in the MRL are formed from predicates with
designators as arguments. Complex propositions are formed from these
by use of the logical connectives AND, OR, and NOT and by quantifi-
cation. For example, (CONTAIN S10046 OLIV) is a proposition formed
by substituting designators as arguments to the predicate CONTAIN,
and

(AND (CONTAIN X3 OLIV) (NOT (CONTAIN X3 PLAG)))
is a complex proposition corresponding to the assertion that X3 contains
olivine but does not contain plagioclase.

4.3 Commands

Elementary commands consist of the name of a command operator
plus arguments. As for propositions, complex commands can be con-
structed using logical connectives and quantification. For example, TEST
is a command operator for testing the truth value of a proposition given
as its argument. Thus

(TEST (CONTAIN S10046 OLIV))
will answer yes or no depending on whether sample S10046 contains
olivine. Similarly, PRINTOUT is a command operator which prints out
a representation for a designator given as its argument.

4.4 Quantification

An important aspect of the meaning of English sentences that must be
captured in any MRL is the use of quantifiers such as “every” and
“some.” Quantification in the LUNAR MRL is represented in an elab-
orated version of the traditional predicate calculus notation. An example
of an expression in this notation is

(FOR EVERY XI / (SEQ SAMPLES) :
(CONTAIN X1 OVERALL SILICON) ; (PRINTOUT XI)).

This says, “for every object X1 in the set of samples such that X1
contains silicon, print out (the name of) Xl.”

In general, an instance of a quantified expression takes the form
(FOR (quant) X / (class) : (p X) ; (q X))

where (quant) is a specific quantifier such as EVERY or SOME, X is
the variable of quantification and occurs open in the expressions (p X)

NATURAL LANGUAGE QUESTION ANSWERING 13

and (q X), (class) is a set over which quantification is to range, (p X) is
a proposition that restricts the range, and (q X) is the expression being
quantified (which may be either a proposition or a command).

For the sake of simplifying some examples, I will generalize the format
of the quantification operator so that the restriction operation implied by
the ":" can be repeated any number of times (including zero if there is
no further restriction on the range), giving rise to forms such as

(FOR (quant) X / (class) ; (q X))

and

(FOR (quant) X / (class) : (p X) : (r X) ; (q X)).

When there is no restriction on the range of quantification, this can also
be indicated by using the universally true proposition T, as in

(FOR (quant) X I (class) : T ; (q X)).

4.5 Specification of the MRL Syntax

A formal BNF specification of the LUNAR MRL is given here:

(expression) = (designator) I (proposition) I (command)
(designator) = (individual constant) 1

(variable) I
((function) (expression)*)

(proposition) = (elementary proposition) I
(quantified proposition)

(elementary proposition) = ((propositional operator)

(propositional operator) = (predicate) I (logical operator)
(logical operator) = AND I OR I NOT I IF-THEN . . .
(quantified proposition) = (FOR (variable) / (class) ;

(class) = (elementary class) I (restricted class)
(elementary class) = (class name) I

(restricted class) = (class) : (proposition)
(command) = (elementary command) I (quantified command)
(elementary command) = ((command operator) (expression)*)
(quantified command) = (FOR (variable) / (class) ; (command))

In addition to the above BNF constraints, each general operator (i,e.,
function, predicate, logical operator, class function, or command opera-
tor) will have particular restrictions on the number and kinds of expres-

(expression)*)

(proposition))

((class function) (expression)*)

14 W. A. WOODS

sions that it can take as arguments in order to be meaningful. Each
operator also specifies which of its arguments it takes literally as given,
and which it will evaluate to obtain a referent (see discussion of opaque
contexts below).

Predicates, functions, class names, class functions, command opera-
tors, and individual constants are all domain-dependent entities which
are to be specified for a particular application domain and defined in
terms of procedures. In LUNAR, they are defined as LISP subroutines.
Individual constants are defined by procedures for producing a reference
pointer to the appropriate internal object in the computer’s model of the
world; functions are defined by procedures for producing a reference
pointer to the appropriate value given the values for the arguments; class
names and class functions are defined by procedures that (given the
appropriate values for arguments) can enumerate the members of their
class one at a time; predicates are defined by procedures which, given
the values of their arguments, determine a truth value for the correspond-
ing proposition; and command operators are defined by procedures
which, given the values of their arguments, can carry out the correspond-
ing commands.

I should point out that the defintion given here for classes and com-
mands are not adequate for a general theory of semantics, but are rather
more pragmatic definitions that facilitate question answering and com-
puter response to commands. For a general semantic theory, the require-
ment for semantic definition of a class is merely a procedure for recog-
nizing a member, and the semantic definition for a command is a
procedure for recognizing when it has been carried out. That is, to be
said to know the meaning of a command does not require the ability to
carry it out, and to know the meaning of a noun does not require an
ability to enumerate all members of its extension. The distinction between
knowing how, and just knowing whether, marks the difference between
pragmatic utility and mere semantic adequacy. The requirements placed
on the definitions of the classes and commands in the LUNAR system
are thus more stringent than those required for semantic definition alone.

4.6 Proced u ral/Declarative Duality

The meaning representation language used in LUNAR is intended to
serve both as a procedural specification that can be executed to compute
an answer or carry out a command, and as a “declarative” representation
that can be manipulated as a symbolic object by a theorem prover or
other inference system. By virtue of the definition of primitive functions
and predicates as LISP functions, the language can be viewed simulta-

NATURAL LANGUAGE QUESTION ANSWERING 15

neously as a higher level programming language and as an extension of
the predicate calculus. This gives rise to two different possible types of
inference for answering questions, corresponding roughly to Carnap’s
distinction between inrension and extension (Carnap, 1964b). First, be-
cause of its definition by means of procedures, a question such as “Does
every sample contain silicon?” can be answered extensionally (that is,
by appeal to the individuals denoted by the class name “samples”) by
enumerating the individual samples and checking whether silicon has
been found in each one. On the other hand, this same question could
have been answered intensionally (that is, by consideration of its meaning
alone without reference to the individuals denoted) by means of the
application of inference rules to other (intensional) facts (such as the
assertion “Every sample contains some amount of each element”). Thus
the expressions in the meaning representation language are capable either
of direct execution against the data base (extensional mode) or manipu-
lation by mechanical inference algorithms (intensional mode).

In the LUNAR system, the principal mode of inference is extensional,
that is, the direct evaluation of the formal MRL expression as a proce-
dure. However, in certain circumstances, this expression is also manip-
ulated as a symbolic object. Such cases include the construction of
descriptions for discourse entities to serve as antecedents for anaphoric
expressions and the use of “smart quantifiers” (to be discussed later)
for performing more efficient quantification. Extensional inference has a
variety of limitations (e.g., it is not possible to prove assertions about
infinite sets in extensional mode), but it is a very efficient method for a
variety of question-answering applications.

4.7 Opaque Contexts

As mentioned above, the general operators in the meaning represen-
tation language are capable of accessing the arguments they are given
either literally or after evaluation. Thus, an operator such as ABOUT in
an expression like

(ABOUT D70-181 (TRITIUM PRODUCTION))

(meaning “Document D70-181 discusses tritium production”) can indi-
cate as part of its definition that, in determining the truth of an assertion,
the first argument (D70-181 in this case) is to be evaluated to determine
its referent, while the second argument (TRITIUM PRODUCTION) is
to be taken unevaluated as an input to the procedure (to be used in some
special way as an intensional object-in this case, as a specification of
a topic that D70-181 discusses).

16 W. A. WOODS

This distinction between two types of argument passing is a relatively
standard one in some programming languages, frequently referred to as
call by value versus call by name. In particular, in the programming
language LISP, there are two types of functions (referred to as LAMBDA
and NLAMBDA functions), the first of which evaluates all of its argu-
ments and the second of which passes all of its arguments unevaluated
to the function (which then specifies in its body which arguments are to
be evaluated and what to do with the others).

This ability to pass subordinate expressions literally as intensional
objects (to be manipulated in unspecified ways by the operator that gets
them) avoids several of the antinomies that have troubled philosophers,
such as the nonequivalence of alternative descriptions of the same object
in belief contexts. Although belief contexts do not occur in LUNAR,
similar problems occur in TRIPSYS, for example, in interpreting the
object of the verb “create,” where the argument to the verb is essentially
a description of a desired object, not an object denoted by the description.

In LUNAR, functions with opaque contexts are also used to define the
basic quantification function FOR as well as general purpose counting,
averaging, and extremal functions: NUMBER, AVERAGE, MAXI-
MUM, and MINIMUM. Calls to these functions take the forms:

(NUMBER X / (class) : (P X))
“The number of X’s in (class) for which (P X) is true.”

(AVERAGE X / (class) : (P X) ; (F X))

“The average of the values of (F X) over the X’s in (class) for which
(P X) is true.”

(AVERAGE X / (class) : (P X))

“The average value of X (a number) over the X’s in (class) for which
(P X) is true.”

(MAXIMUM X / (class) : (P X))

“The maximum value of X in the set of X’s in (class) for which (P X)
is true.”

(MINIMUM X / (class) : (P X))

“The minimum value of X in the set of X’s in (class) for which (P X)
is true. ”

The proposition (P X) in each of these cases has to be taken as an
intensional entity rather than a referring expression, since it must be
repeatedly evaluated for different values of X.

NATURAL LANGUAGE QUESTION ANSWERING 17

Opaque context functions are also defined for forming the intensional
descriptions of sets and the intensional union of intensionally defined
sets:

(SETOF X / (class) : (P X))

“The set of X’s in (class) for which (P X) is true.”

(UNION X / (class) : (P X) ; ((setfn) X))

“The union over the X’s in (class) for which (P X) is true of the sets
generated by ((setfn) X). ”

4.8 Restricted Class Quantification

One of the major features of the quantifiers in the LUNAR MRL is
the separation of the quantified expression into distinct structural parts:
(1) the basic class over which quantification is to range, (2) a set of
restrictions on that class, and (3) the main expression being quantified.
There are a number of advantages of maintaining these distinctions, one
of which is the uniformity of the interpretation procedure over different
kinds of noun phrase determiners that it permits. For example, the de-
terminers “some” and “every”, when translated into the more custom-
ary logical representations, give different main connectives for the
expression being quantified. That is, “every man is mortal” becomes
(Ax)Man(x)+Mortal(x) while “some man is mortal” becomes
(Ex)Man(x)&Mortal(x). With the LUNAR format, the choice of deter-
miner affects only the choice of quantifier.

Other advantages to this kind of quantifier are the facilitation of certain
kinds of optimization operations on the MRL expressions, and the gen-
eration of appropriate antecedents for various anaphoric expressions.
Recently, Nash-Webber and Reiter (1977) have pointed out the necessity
of making a distinction between the quantification class and the predicated
expression if an MRL is to be adequate for handling verb phrase ellipsis
and “one”-anaphora.

4.9 Nonstandard Quantifiers

Another advantage of the restricted class quantifier notation is the
uniform treatment of a variety of nonstandard quantifiers. For example,
LUNAR treats the determiner “the” in a singular noun phrase as a
quantifier, selecting the unique object that satisfies its restriction (and
complaining if the presupposition that there is a unique such object is
not satisfied). This differs from the traditional representation of definite
description by means of the iota operator, which constructs a complex

18 W. A. WOODS

designator for a constituent rather than a governing quantifier. In the
traditional notation, the sentence “The man I see is mortal,” would be
represented something like

MORTAL(i(x) : MAN(x) & SEE(1,x)).

In the LUNAR MRL it would be

(FOR THE X / MAN : (SEE I X) ; (MORTAL X)).

Quantifiers such as “many” and “most,” whose meaning requires
knowledge of the size of the class over which quantification ranges (as
well as the size of the class for which the quantified proposition is true)
can be adequately handled by this notation since the range of quantifi-
cation is specifically mentioned. These quantifiers were not implemented
in LUNAR, however.

Among the nonstandard quantifiers handled by LUNAR are numerical
determiners (both cardinal and ordinal) and comparative determiners.
Ordinal quantifiers (“the third X such that P”) are handled by a special
quantifier (ORDINAL n) that can be used in the (quant) slot of the
quantifier form. In general this ordinal quantifier should take another
parameter that names the ordering function to be used, or at least require
a preferred ordering function to be implied by context. The ordering of
the members of the class used by LUNAR is the order of their enumer-
ation by the enumeration function that defines the class (see Section 5.2) .

Numerical quantification and comparative quantification are handled
with a general facility for applying numeric predicates to a parameter N
in the FOR function that counts the number of successful members of
the range of quantification that have been found. Examples are
(GREATER N (number)), (EQUAL N (number)), or even (PRIME N)
(i.e., N is a prime number).

The interpretation of general numeric predicates as quantifiers is that
if any number N satisfying the predicate can be found such that N
members of the restricted class satisfy the quantified proposition (or
successfully complete a quantified command), then the quantified prop-
osition is true (or a quantified command is considered completed). In the
implementation, the current value of N is tested as each successful
member of the restricted class is found, until either the count N satisfies
the numeric predicate or there are no more members in the class.

The numeric predicate quantifier can be used directly to handle com-
parative determiners such as “at least” and “more than,” and can be
used in a negated quantification to handle “at most” and “fewer than.”
The procedure for testing such quantifiers can return a value as soon as

NATURAL LANGUAGE QUESTION ANSWERING 19

a sufficient number of the class have been found, without necessarily
determining the exact number of successful members. The numerical
determiner “exactly (n)” is handled in LUNAR by the generalized count-
ing function NUMBER embedded in an equality statement. (It could also
be handled by a conjunction of “at least” and “not more than,” but that
would not execute as efficiently.)

The LUNAR MRL also permits a generic quantifier GEN, which is
assigned to noun phrases with plural inflection and no determiner. Such
noun phrases sometimes behave like universal quantification and some-
times like existential quantification. In LUNAR, unless some higher
operator indicates that it should be interpreted otherwise, a generic quan-
tifier is evaluated exactly like EVERY.

Examples of types of quantification in LUNAR are

(FOR EVERY X / CLASS : (P X) ; (Q X))

“Every X in CLASS that satisfies P also satisfies Q.”

(FOR SOME X / CLASS : (P X) ; (Q X))

“Some X in CLASS that satisfies P also satisfies Q.”

(FOR GEN X / CLASS : (P X) ; (Q X))

“A generic X in CLASS that satisfies P will also satisfy Q.”

(FOR THE X / CLASS : (P X) ; (Q X))
“The single X in CLASS that satisfies P also satisfies Q.”

(FOR (ORDINAL 3) X / CLASS : (P X) ; (Q X))

“The third X in CLASS that satisfies P also satisfies Q.”

(FOR (GREATER N 3) X / CLASS : (P X) ; (Q X))

“More than 3 X’s in CLASS that satisfy P also satisfy Q.”

(FOR (EQUAL N 3) X / CLASS : (P X) ; (Q X))

“At least 3 X’s in CLASS that satisfy P also satisfy Q.”

(NOT (FOR (EQUAL N 3) X / CLASS : (P X) ; (Q X)))

“Fewer than 3 X’s in CLASS satisfy P and also satisfy Q.”

(EQUAL 3 (NUMBER X / CLASS : (P X) : (Q X)))

“Exactly 3 X’s in CLASS satisfy P and also satisfy Q.”

20 W. A. WOODS

4.10 Functions and Classes

Another of the attractive features of the LUNAR MRL is the way that
quantification over classes, single and multiple valued functions, and the
attachment of restrictive modifiers are all handled uniformly, both indi-
vidually and in combination, by the quantification operators. Specifically,
a noun phrase consisting of a function applied to arguments is represented
in the same way as a noun phrase whose head is a class over which
quantification is to range. For example “The departure time of flight 557
is 3:OO” can be represented as

(FOR THE X / (DEPARTURE-TIME FLIGHT-557) : T ;
(EQUAL X 3 : 00))

(where T is the universally true proposition, signifying here that there
are no further restrictions on the range of quantification). This permits
exactly the same mechanisms for handling the various determiners and
modifiers to apply to both functionally determined objects and quantifi-
cation over classes.

This uniformity of treatment becomes especially significant when the
function is not single valued and when the class of values is being quan-
tified over or restricted by additional modifiers as in

(FOR EVERY X / (DATALINE S10046 OVERALL 5102) :
T ; (PRINTOUT X))

and

(FOR THE X / (DATALINE S10046 OVERALL S102) :

where (DATALINE (sample) (phase) (constituent)) is the function used
in LUNAR to enumerate measurements in its chemical analysis table
and (REF* (table entry) (document)) is a relation between a measure-
ment and the journal article it was reported in.

(REF* X D70-181) ; (PRINTOUT X))

4.1 1 Unanticipated Requests

The structure of the meaning representation language, when coupled
with general techniques for semantic interpretation, enable the user to
make very explicit requests with a wide range of diversity within a natural
framework. As a consequence of the modular composition of MRL
expressions, it is possible for the user to combine the basic predicates
and functions of the retrieval component in ways that were not specifi-
cally anticipated by the system designer. For example, one can make
requests such as “List the minerals”, “What are the major elements‘?’’,

NATURAL LANGUAGE QUESTION ANSWERING 21

“How many minerals are there?”, etc. Although these questions might
not be sufficiently useful to merit special effort to handle them, they fall
out of the mechanism for semantic interpretation in a natural way with
no additional effort required. If the system knows how to enumerate the
possible samples for one purpose, it can do so for other purposes as well.
Furthermore, anything that the system can enumerate, it can count.
Thus, the decomposition of the retrieval operations into basic units of
quantifications, predicates, and functions provides a very flexible and
powerful facility for expressing requests.

5. The Semantics of the Notation

5.1 Procedural Semantics

As mentioned before, the semantic specification of a natural language
requires not only a semantic notation for representing the meanings of
sentences, but also a specification of the semantics of the notation. As
discussed previously, this is done in LUNAR by relating the notation to
procedures that can be executed. For each of the predicate names that
can be used in specifying semantic representations, LUNAR requires a
procedure or subroutine that will determine the truth of the predicate for
given values of its arguments. Similarly, for each of the functions that
can be used, there must be a procedure that computes the value of that
function for given values of its arguments. Likewise, each of the class
specifiers for the FOR function requires a subroutine that enumerates the
members of the class.

The FOR function itself is also defined by a subroutine, as are the
logical operators AND, OR, and NOT, the general counting and aver-
aging functions NUMBER and AVERAGE, and the basic command
functions TEST and PRINTOUT. Thus any well-formed expression in
the language is a composition of functions that have procedural defini-
tions in the retrieval component and are therefore themselves well-de-
fined procedures capable of execution on the data base. In the LUNAR
system, the definition of all of these procedyes is done in LISP, and the
notation of the meaning representation language is so chosen that its
expressions are executable LISP programs. These function definitions
and the data base on which they operate constitute the retrieval com-
ponent of the system.

5.2 Enumeration Functions

One of the engineering features of the LUNAR retrieval component
that makes the quantification operators both efficient and versatile is the

22 W. A. WOODS

definition of quantification classes by means of enumeration functions.
These are functions that compute one member of the class at a time and
can be called repeatedly to obtain successive members. Enumeration
functions take an enumeration index argument which is used as a restart
pointer to keep track of the state of the enumeration. Whenever FOR
calls an enumeration function to obtain a member of a class, it gives it
an enumeration index (initially T), and each time the enumeration func-
tion returns a value, it also returns a new value of the index to be used
as a restart pointer to get the next member. This pointer is frequently an
inherent part of the computation and involves negligible overhead to
construct. For example, in enumerating integers, the previous integer
suffices, while in enumerating members of an existing list, the pointer to
the rest of the list already exists.

The enumeration function formulation of the classes used in quantifi-
cation frees the FOR function from explicit dependence on the structure
of the data base; the values returned by the enumeration function may
be searched for in tables, computed dynamically, o r merely successively
accessed from a precomputed list. Enumeration functions also enable the
quantifiers to operate on potentially infinite classes and on classes of
objects that do not necessarily exist prior to the decision of the quantifier
to enumerate them. For example, in an expression such as

(FOR SOME X / INTEGER : (LESSP X 10) ; (PRIME X))

(“some integer less than 10 is a prime”), a general enumeration procedure
for integers can be used to construct successive integers by addition,
without having to assume that all the integers of interest exist in the
computer’s memory ahead of time. Thus, the treatment of this kind of
quantification fits naturally within LUNAR’S general quantification
mechanism without having to be treated as a special case.

In the grammar information system application, an enumeration func-
tion for paths computes representations for paths through the grammar,
so that paths can be talked about even though there are no explicit
entities in the internal grammar representation that correspond to paths.
(See the discussion on “smart” quantifiers below for a further discussion
of the problems of quantifying over such entities.)

An enumeration function can indicate termination of the class in one
of two ways: either by returning NIL, indicating that there are no more
members, or by returning a value with a NIL restart pointer, indicating
that the current value is the last one. This latter can save one extra call
to the enumeration function if the information is available at the time the
last value is returned (e.g., for single valued functions). This avoids what

NATURAL LANGUAGE QUESTION ANSWERING 23

would otherwise be an inefficiency in treating multiple- and single-valued
functions the same way.

In LUNAR, a general purpose enumeration function SEQ can be used
to enumerate any precomputed list, and a similar function SEQL can be
used to enumerate singletons. For example,

(FOR EVERY XI / (SEQ TYPECS) : T ; (PRINTOUT XI))

is an expression that will printout the sample numbers for all of the
samples that are type C rocks.

Functionally determined objects and classes, as well as fixed classes,
are implemented as enumeration functions, taking an enumeration index
as well as their other arguments and computing successive -members of
their class one at a time. In particular, intensional operators such as
AVERAGE, NUMBER, SETOF, and UNION are defined as enumera-
tion functions and also use enumeration functions for their class argu-
ments. Thus quantification over classes, computation of single-valued
functions, and quantification over the values of multiple-valued functions
are all handled uniformly, without special distinctions having to be made.

5.3 Quantified Commands

As mentioned earlier, both propositions and commands can be quan-
tified. Thus one can issue commands such as
(FOR (EQ N 5) X / SAMPLES : (CONTAIN X SI02) ; (PRINTOUT X))
(“Print out five samples that contain silicon”). The basic commands in
such expressions are to be iterated according to the specifications of the
quantifier. However, it is possible for such commands to fail due to a
violation of presuppositions or of necessary conditons. For example, in
the above case, there might not be as many as five samples that contain
silicon. In order for the system to be aware of such cases, each command
in the system is defined to return a value that is non-null if the command
has been successfully executed and NIL otherwise. Given this conven-
tion, the FOR operator will automatically return T if such an iterated
command has been successfully completed and NIL otherwise.

There are other variations of this technique that could be useful but
were not implemented in LUNAR, such as returning comments when a
command failed indicating the kind of failure. In LUNAR, such com-
ments were sometimes printed to the user directly by the procedure that
failed, but the system itself had no opportunity to “see” those comments
and take some action of its own in response to them (such as trying some
other way to achieve the same end).

24 W. A. WOODS

In LUNAR, interpretations of commands are given directly to the
retrieval component for evaluation, although in a more intelligent system,
as in humans, the decision to carry out a command once it is understood
would not necessa:ily automatically follow,

6. Semantic Interpretation

Having now specified the notation in which the meanings of English
sentences are to be represented and specifying the meanings of expres-
sions in that notation, we are now left with the specification of the
process whereby meanings are assigned to sentences. This process is
referred to as semantic interpretation, and in LUNAR it is driven by a
set of formal semantic interpretation rules. For example, the interpreta-
tion of the sentence “S10046 contains silicon,” to which the parser would
assign the syntactic structure

S DCL
NP NPR S10046
AUX TNS PRESENT
V P VCONTAIN

NP NPR SILICON

is determined by a rule that applies to a sentence when the subject is a
sample, the object is a chemical element, oxide, or isotope, and the verb
is “have” or “contain.” This rule specifies that such a sentence is to be
interpreted as an instance of the schema (CONTAIN x y), where x is to
be replaced by the interpretation of the subject noun phrase of the sen-
tence, and y is to be replaced by the interpretation of the object.

This information about conditions on possible arguments and substi-
tutions of subordinate interpretations into “slots” in the schema is rep-
resented in LUNAR by means of the pattern + action rule

[S: CONTAIN
(S.NP (MEM I SAMPLE))
(S .V (OR (EQU 1 HAVE)

(S.OBJ (MEM 1 (ELEMENT OXIDE ISOTOPE)))
+(QUOTE (CONTAIN (# 1 1) (# 3 1))) I.

The name of the rule is S:CONTAIN. The left-hand side, or pattern
part, of the rule consists of three templates that match fragments of
syntactic structure. The first template requires that the sentence being

(EQU 1 CONTAIN))

NATURAL LANGUAGE QUESTION ANSWERING 25

interpreted have a subject noun phrase that is a member of the semantic
class SAMPLE; the second requires that the verb be either “have” or
“contain;” and the third requires a direct object that is either a chemical
element, an oxide, or an isotope.

The right-hand side, or action part, of the rule follows the right arrow
and specifies that the interpretation of this node is to be formed by
inserting the interpretations of the subject and object constituents into
the schema (CONTAIN (# 1 1) (# 3 l)), where the expressions (# m n)
mark the “slots” in the schema where subordinate interpretation are to
be inserted. The detailed structure of such rules is described in Section
6.3. (Note that the predicate CONTAIN is the name of a procedure in
the retrieval component, and it is only by the “accident” of mnemonic
design that its name happens to be the same as the English word “con-
tain” in the sentence that we have interpreted.)

The process of semantic interpretation can conveniently be thought of
as a process that applies to parse trees produced by a parser to assign
semantic interpretations to nodes in the tree. In LUNAR and the other
systems above, except for TRIPSYS, this is how the interpretations are
produced. (In TRIPSYS, they are produced directly by the parser without
an intermediate syntax tree representation.) The basic interpretation
process is a recursive procedure that assigns an interpretation to a node
of the tree as a function of its syntactic structure and the interpretations
of its constituents.

The interpretations of complex constituents are thus built up modularly
by a recursive process that determines the interpretation of a node by
inserting the interpretations of certain constituent nodes into open slots
in a schema. The schema to be used is determined by rules that look at
a limited portion of the tree. At the bottom level of the tree (i.e., the
leaves of the tree), the interpretation schemata are literal representations
without open sbts , specifying the appropriate elementary interpretations
of basic atomic constituents (e.g., proper names).

In LUNAR, the semantic interpretation procedure is implemented in
such a way that the interpretation of nodes can be initiated in any order.
If the interpretation of a node requires the interpretation of a constituent
that has not yet been interpreted, then the interpretation of that constit-
uent is performed before that of the higher node is completed. Thus, it
is possible to perform the entire semantic interpretation by calling for the
interpretation of the top node (the sentence as a whole). This is the
normal mode in which the interpreter is operated in LUNAR. I will
discuss later (Sections 11.3 and 11.4) some experiments in which this
mechanism is used for “bottom-up” interpretation.

26 W. A. WOODS

6.1 Complications Due to Quantifiers

In the above example, the interpretation of the sentence is obtained by
inserting the interpretations of the proper noun phrases “S10046” and
“silicon” (in LUNAR these are “S10046” and “SI02,” respectively)
into the open slots of the right-hand side schema to obtain

(CONTAIN S10046 SI02).

When faced with the possibility of a quantified noun phrase, however,
the problem becomes somewhat more complex. If the initial sentence were
“Every sample contains silicon,” then one would like to produce the
interpretation

(FOR EVERY X / SAMPLE ; (CONTAIN X SI02)).

That is, one would like to create a variable to fill the “container” slot of
the schema for the main verb, and then generate a quantifier governing
that variable to be attached above the predicate CONTAIN. As we shall
see, the LUNAR semantic interpretation system specifically provides for
the generation and appropriate attachment of such quantifiers.

6.2 Problems with an Alternative Approach

Because of the complications discussed above, one might ask whether
there is some other way to handle quantification without generating
quantifiers that are extracted from their noun phrase and attached as
dominant operators governing the clause in which the original noun
phrase was embedded. One might, instead, attempt to interpret the quan-
tified noun phrase as some kind of a set that the verb of the clause takes
as its argument, and require the definition of the verb to include the
iteration of its basic predicate over the members of the class. For ex-
ample, one might want a representation for the above example something
like

(CONTAIN (SET X / SAMPLE : T) SI02)

with the predicate CONTAIN defined to check whether its first argument
is a set and if so, check each of the members of that set.

However, if one were to take this approach, some way would be
needed to distinguish giving CONTAIN a set argument over which it
should do universal quantification from one in which it should do exis-
tential quantification. One would similarly have to be able to give it
arguments for the various nonstandard quantifiers discussed above, such
as numerical quantifiers and quantifiers like “most.” Moreover, the same
thing would have to be done separately for the second argument to

NATURAL LANGUAGE QUESTION ANSWERING 27

CONTAIN as well as the first (i.e., the chemical element as well as the
sample), and one would have to make sure that all combinations of
quantifiers in the two argument positions worked correctly. Essentially
one would have to duplicate the entire quantificational mechanism dis-
cussed above as part of the defining procedure for the meaning of the
predicate CONTAIN. Moreover, one would then have to duplicate this
code separately for each other predicate and command in the system.
Even if one managed to share most of the code by packaging it as
subroutines, this is still an inelegant way of handling the problem.

Even if one went to the trouble just outlined, there are still logical
inadequacies, since there is no way with the proposed method to specify
the differences in meaning that correspond to the different relative scopes
of two quantifiers (e.g., “Every sample contains some element” versus
“There is some element that every sample contains”). Likewise, there
is no mechanism to indicate the relative scopes of quantifiers and sen-
tential operators such as negation (“Not every sample contains silicon”
versus “Every sample contains no silicon”). It appears, therefore, that
treating quantifiers effectively as higher operators is essential to correct
interpretation in general.

6.3 The Structure of Semantic Rules

As discussed above, in determining the meaning of a construction, two
types of information are used: syntactic information about sentence con-
struction and semantic information about constituents. For example, in
interpreting the above example, it is both the syntactic structure of the
sentence (subject = S10046; verb = “contain;” object = silicon) plus the
semantic fact that S10046 is a sample and silicon is a chemical element
that determine the interpretation. Syntactic information about a construc-
tion is tested by matching tree fragments such as those indicated below
against the mode being interpreted:

S.NP = S NP (1) (subject of a sentence)
s.v
S.OBJ
S.PP = S VP PP PREP (1) (preposition and object

NP.ADJ = NP ADJ (2) (adjective modifying a noun phrase).

= S VP V (1)
= S VP NP (1)

(main verb of a sentence)
(direct object of a sentence)

NP (2) modifying a verb phrase)

Fragment S.NP matches a sentence if it has a subject and also associates
the number 1 with the subject noun phrase. S.PP matches a sentence that
contains a prepositional phrase modifying the verb phrase and assaciates
the numbers 1 and 2 with the preposition and its object, respectively.

28 W. A. WOODS

The numbered nodes can be referred to in the left-hand sides of rules for
checking semantic conditions, and they are used in the right-hand sides
for specifying the interpretation of the construction. These tree structure
fragments can be named mnemonically as above for readability.

The basic element of the left-hand side of a rule is a template consisting
of tree fragments plus additional semantic conditions on the numbered
nodes of the fragment. For example, the template (S.NP (MEM 1 SAM-
PLE)) matches a sentence if its subject is semantically marked as a
sample. The pattern part of a rule consists of a sequence of templates,
and the action of the rule specifies how the interpretation of the sentence
is to be constructed from the interpretations of the nodes that match the
numbered nodes of the templates.

Occasionally, some of the elements that are required to construct an
interpretation may be found in one of several alternative places in a
construction. For example, the constituent to be measured in an analysis
can occur either as a prenomial adjective (“a silicon analysis”) or as a
post-nominal prepositional phrase (“an analysis of silicon”). To handle
this case, basic templates corresponding to the alternative ways the
necessary element can be found can be grouped together with an OR
operator to form a disjunctive template that is satisfied if any of its
disjunct templates are. For example,

(OR (NP.ADJ (MEM 2 ELEMENT))
(NP.PP (AND (EQU 1 OF)

Also occasionally, two rules will be distinguished by the fact that one
applies when a given constituent is present and the other will require it
to be absent. In order to write the second rule so that it will not match
in circumstances where it is not intended, a basic template can be embed-
ded in a negation operator NOT to produce a negated template that is
satisfied if its embedded template fails to match and is not satisfied when
its embedded template succeeds. For example,

(NOT (NP.ADJ (EQU 2 MODAL))).

(MEM 2 ELEMENT))).

In general, the left-hand side of a rule consists of a sequence of tem-
plates (basic, disjunctive, or negated).

6.3.1 Right-Hand Sides

The right-hand sides (or actions) of semantic rules are schemata into
which the interpretations of embedded constituents are inserted before
the resulting form is evaluated to give a semantic interpretation. The

NATURAL LANGUAGE QUESTION ANSWERING 29

places, or “slots,” in the right-hand sides where subordinate interpreta-
tions are to be inserted are indicated by expressions called REFS, which
begin with the atom # and contain one or two numbers and an optional
“TYPEFLAG.” The numbers indicate the node in the tree whose inter-
pretation is to be inserted by naming first the sequence number of a
template of the rule, and then the number of the corresponding node in
the tree fragment of that template. Thus the reference (# 2 1) represents
the interpretation of the node that matches node 1 of the 2nd template of
the rule. In addition, the single number 0 can also be used to reference
the current node, as in (# 0 TYPEFLAG).

The TYPEFLAG element, if present, indicates how the subordinate
node is to be interpreted. For example, in LUNAR there is a distinction
between interpreting a node normally and interpreting it as a topic de-
scription. Thus (# 0 TOPIC) represents the interpretation of the current
node as a topic description. There are a variety of types of interpretation
used for various purposes in the rules of the system. The absence of a
specific TYPEFLAG in a REF indicates that the interpretation is to be
done in the normal mode for the type of node that it matches.

6.3.2 Right-Hand Side Evaluation

In many cases, the semantic interpretation to be attached to a node
can be constructed by merely inserting the appropriate constituent inter-
pretations into the open slots in a fixed schema. However, occasionally,
more than this is required and some procedure needs to be executed to
modify or transform the resulting instantiated schema. To provide for
this, the semantic interpreter treats right-hand sides of rules as expres-
sions to be evaluated to determine the appropriate interpretation. For
rules in which the desired final form can be given literally, the right-hand
side schema is embedded in the operator QUOTE which simply returns
its argument unchanged. This is the case in the example above. In special
cases, right-hand side operators can do fairly complex things, such as
searching a discourse directory for antecedents for anaphoric expressions
and computing intensional unions of sets. In the usual case, however,
the operator is either QUOTE or one of the two operators PRED and
QUANT that handle quantifier passing (discussed below).

6.4 Relationship of Rules to Syntax

.In many programming languages and some attempts to specify natural
language semantics, semantic rules are paired directly with syntactic
phrase structure rules so that a single compact pairing specifies both the
syntactic structure of a constituent and its interpretation. This type of

30 W. A. WOODS

specification is clean and straightforward and works well for artificial
languages that can be defined by context-free or almost context-free
grammars. For interpreting natural language sentences, whose structure
is less isomorphic to the kind of logical meaning representation that one
would like to derive, it is less convenient, although not impossible.
Specifically, with the more complex grammars for natural language, e.g.,
ATN’s and transformational grammars, the simple notion of a syntactic
rule with which to pair a semantic rule becomes less clear. Consequently,
the rules in the LUNAR system are not paired with the syntactic rules,
nor are they constrained to look only at the immediate constituents of a
phrase. In general they can look arbitrarily far down into the phrase they
are interpreting, picking up interpretations of subordinate constituents at
any level, and looking at various syntactic aspects of the structure they
are interpreting, as well as the semantic interpretations of constituents.
The rules are invoked not by virtue of applying a given syntactic rule,
but by means of rule indexing strategies described below.

6.5 Organization of the Semantic Interpreter

The overall operation of the semantic interpreter is as follows: A top
level routine calls the recursive function INTERP looking at the top level
of the parse tree. Thereafter, INTERP attempts to match semantic rules
against the specified node of the tree, and the right-hand sides of matching
rules specify the interpretation to be given to the node. The possibility
of semantic ambiguity is recognized, and therefore the routine lNTERP
produces a list of possible interpretations (usually a singleton, however).
Each interpretation consists of two parts: a node interpretation (called
the SEM of the node) and a quantifier “collar” (called the QUANT of
the node). The QUANT is a schema for higher operators (such as quan-
tification) that is to dominate any interpretation in which the SEM is
inserted (used for quantifier passing-see Section 6.7). Thus the result of
a call to INTERP for a given node P is a list of SEM-QUANT pairs, one
for each possible interpretation of the node.

6.5.7 Context-Dependent Interpretation

The function INTERP takes two arguments-the construction to be
interpreted and a TYPEFLAG that indicates how to interpret it. The
TYPEFLAG mechanism is intended to allow a constituent to be inter-
preted differently depending on the higher level structure within which
it is embedded. The TYPEFLAG permits a higher level schema to pass
down information to indicate how it wants a constituent interpreted. For
example, some verbs can specify that they want a noun phrase interpreted

NATURAL LANGUAGE QUESTION ANSWERING 31

as a set rather than as a quantification over individuals. The TYPEFLAG
mechanisms is also used to control the successive phases of interpretation
of noun phrases and clauses (discussed below).

When interpreting a node, INTERP first calls a function HEAD to
determine the head of the construction and then calls a function RULES
to determine the list of semantic rules to be used (which depends, in
general, on the type of node, its head word, and the value of TYPE-
FLAG). It then dispatches control to a routine MATCHER to try to
match the rules. If no interpretations are found, then, depending on the
TYPEFLAG and various mode settings, INTERP either returns a default
interpretation T, goes into a break with a comment that the node is
uninterpretable (permitting a systems programmer to debug rules), or
returns NIL indicating that the node has no interpretations for the indi-
cated TYPEFLAG.

6.5.2 Phased Interpretation

In general, there are two types of constituents in a sentence that
receive interpretations-clauses and noun phrases. The former receive
interpretations that are usually predications or commands, while the
latter are usually designators. The interpretation of these two different
kinds of phrase are slightly different, but also remarkably similar. In each
case there is a governing “head” word; the verb in the case of a clause,
and the head noun in the case of the noun phrase. The interpretation of
a phrase is principally determined by the head word (noun or verb) of
the construction. However, there are also other parts of a construction
that determine aspects of its interpretation independent of the head word.
These in turn break down into two further classes: (1) modifying phrases
(which themselves have dominating head words) that augment or alter
meaning of the head, and (2) function words that determine governing
operators of the interpretation that are independent of the head word and
its modifiers. In the case of clauses, these latter include the interpretation
of tense and aspect and various qualifying operators such as negative
particles. In the case of noun phrases, these include the interpretation of
articles and quantifiers and the inflected case and number of the head
noun.

As a consequence of these distinctions, the semantic interpretation of
a construction generally consists of three kinds of operations: determining
any governing operators that are independent of the head word, deter-
mining the basic interpretation of the head, and interpreting any modifiers
that may be present. In LUNAR, these three kinds of interpretation are
governed by three different classes of rules that operate in three phases.

32 W. A. WOODS

The phases are controlled by the rules themselves by using multiple calls
to the interpreter with different TYPEFLAGS.

The above description is not the only way such phasing could be
achieved. For example, it would be possible to gain the same phasing of
interpretation by virtue of the structures assigned to the input by the
parser (see Section 11.2) or by embedding the phasing in the control
structure of the interpreter. In the original flight schedules and grammar
information implementations, this phasing was embedded in the control
structure of the interpreter. Placing the phasing under the control of the
rules themselves in LUNAR provided more flexibility. In TRIPSYS, the
equivalent of such phasing is integrated, along with the semantic inter-
pretation, into the parsing process.

In general, the interpretation of a construction is initially called for
with TYPEFLAG NIL. This first interpretation may in turn involve
successive calls for interpretation of the same node with other TYPE-
FLAGS to obtain subsequent phases of interpretation. For example,
clauses are initially interpreted with TYPEFLAG NIL, and the rules
invoked are a general set of rules called PRERULES that look for ne-
gative articles, tense marking, conjunctions, etc., to determine any gov-
erning operators that should surround the interpretation of the verb.
Whichever of these rules matches will then call for another interpretation
of the same construction with an appropriate TYPEFLAG. The basic
interpretation of the verb is done by a call with TYPEFLAG SRULES,
which invokes a set of rules stored on the property list of the verb (or
reachable from the entry for that verb by chaining up a generalization
hierarchy). For example, in interpreting the sentence “S10046 doesn’t
contain silicon”, the initial PRERULE PR-NEG matches with a right-
hand side

(PRED (NOT (# 0 SRULES))).

The SRULE S:CONTAIN discussed above then matches, producing
eventually (CONTAIN S10046 SIOZ), which is then embedded in the PR-
NEG schema to produce the final interpretation

(NOT (CONTAIN S10046 S102)).

Ordinary noun phrases are usually interpreted by an initial phase that
interprets the determiner and number, a second phase that interprets the
head noun and any arguments that it may take (Lea, as a function), and
a third phase that interprets other adjectival and prepositional phrase
modifiers and relative clauses.

NATURAL LANGUAGE QUESTION ANSWERING

6.5.3 Proper Nouns and Mass Terms

In addition to the rules discussed above for ordinary noun phrases,
there are two special classes of noun phrases-proper nouns and mass
terms-that have their own rules. Proper nouns are the direct names of
individuals in the data base. Their identifiers in the data base, which are
not necessarily identical to their normal English orthography, are indi-
cated in the dictionary entry for the English form. Mass terms are the
names of substances like silicon and hydrogen. Proper nouns are repre-
sented in the LUNAR syntactic representations as special cases of noun
phrases by a rule equivalent to NP + NPR, while mass terms are rep-
resented as ordinary noun phrases with determiner NIL and number SG.

In general, the interpretation of mass terms requires a special treatment
of quantifiers, similar to but different from the ordinary quantifiers that
deal with count nouns (e.g., “some silicon” means an amount of stuff,
while “some sample” means an individual sample). In the LUNAR
system, however, mass terms are used only in a few specialized senses
in which they are almost equivalent to proper nouns naming a substance.

6.6 Organization of Rules

As mentioned above, the semantic rules for interpreting sentences are
usually governed by the verb of the sentence. That is, out of the entire
set of semantic rules, only a relatively small number of them can possibly
apply to a given sentence because of the verb mentioned in the rule.
Similarly, the rules that interpret noun phrases are governed by the head
noun of the noun phrase. For this reason, most semantic rules in LUNAR
are indexed according to the heads of the constructions to which they
could apply, and recorded in the dictionary entry for the head words.
Specifically, associated with each verb is a set of “SRULES” for inter-
preting that verb in various contexts, and associated with each noun is
a set of ‘“RULES” for interpreting various occurrences of that noun.
In addition, associated with each noun are a set of “RRULES” for
interpreting various restrictive modifiers that may be applied to that
noun. Each rule essentially characterizes a syntactichemantic environ-
ment in which a word can occur, and specifies its interpretation in that
environment. The templates of a rule thus describe the necessary and
sufficient constituents and semantic restrictions for a word to be mean-
ingful.

In addition to indexing rules directly in the dictionary entry for a given
word, certain rules that apply generally to a class of words are indexed
in an inheritance hierarchy (frequently called an “is-a” hierarchy in

34 W. A. WOODS

semantic network notations) so that they can be recorded once at the
appropriate level of generality. Specifically, each work in the dictionary
has a property called MARKERS which contains a list of classes of
which it is a member (or subclass), i.e., classes with which this word has
an “is-a” relationship. Each of these classes also has a dictionary entry
that may contain SRULES, NRULES, and RRULES. The set of rules
used by the interpreter for any given phrase is obtained by scanning up
these chains of inheritance and gathering up the rules that are found.
These accesses are quite shallow in LUNAR but would be used more
heavily in a less limited topic domain.

In situations in which the set of rules does not depend on the head of
the construction, the rules to be used are taken from a global list deter-
mined by the value of TYPEFLAG and the type of the constituent being
interpreted. For example, in interpreting the determiner structure of a
noun phrase, a global list of DRULES is used.

6.6.1 Rule Trees

Whether indexed by the head words of cons ructions or aken from
global lists, rules to be tried are organized into a tree structure that can
make rule matching conditional on the success or failure of previous
rules. A rule tree specifies the order in which rules are to be tried and
after each rule indicates whether a different tree of rules is to be tried
next, depending on the success or failure of previous rules. The format
for a rule tree is basically a list of rules (or rule groups-see multiple
matches below) in the order they are to be tried. However, after any
given element in this list, a new rule tree can be inserted to be used if
any of the rules preceding it have succeeded. If no rules preceding it
have succeeded, then the inserted tree is skipped and rules continue to
be taken from the rules that follow it in the list. For example, the tree (R1
R2 (R4 R5) R3 R4 R5) indicates that R1 and R2 are to be tried in that
order and if either of them succeed, the subsequent rules to be tried are
R4 and R5. If neither R1 nor R2 succeed, then the remaining list R3, R4,
R5 is to be tried next. This example illustrates how a rule tree can be
used to skip around rules that are to be omitted if previous rules have
succeeded.

The most usual cases of rule trees in LUNAR are simple lists (i.e., no
branching in the tree), and lists of rules with inserted empty trees (i-e.,
the empty list NIL) serving as “barriers” to stop the attempted matching
of rules once a successful rule has been found.

NATURAL LANGUAGE QUESTION ANSWERING 35

6.6.2 Multiple Matches

Since the templates of a rule may match a node in several ways, and
since several rules may simultaneously match a single node, it is neces-
sary to indicate how the interpretation of a node is to be constructed in
such a case. To provide this information, the lists of rules at each level
of a rule tree can be organized into groups, with each group indicating
how (or whether) simultaneous matches by different rules are to be
combined. The format of a rule group is a list of rules (or other groups)
preceded by an operator specifying the mode for combining simultaneous
matches. Outside the scopes of rule groups, the mode to be used is
specified by a default value determined by TYPEFLAG and the type of
node being interpreted. Possible modes are AND (which combines mul-
tiple matches with an AND, i.e., treats multiple matches as finding
different parts of a single conjoined meaning), OR (which combines mul-
tiple matches with an OR), SPLIT (which keeps multiple matches sepa-
rate as semantic ambiguities), and FAIL (which prohibits multiple
matches, i.e., complains if it finds any).

To illustrate the behavior of rule groups in rule trees, a rule list of the
form (A B NIL C (OR D E)) with default mode AND indicates that if
either of the rules A or B is successful, then no further matches are tried
(NIL is a barrier); otherwise, rules C, D, and E are tried. If both D and
E match, then the results are OR’ed together, and if C matches together
with D or E or both, it is AND’ed to the results of the OR group.

The modes (AND, OR, SPLIT, and FAIL) also apply to multiple
matches of a single rule. A rule may either specify the mode for multiple
matches as its first element prior to the list of templates, or else it will
be governed by the rule group or default mode setting at the time it is
matched.

6.7 The Generation of Quantifiers

As mentioned above, the LUNAR interpretation system specifically
provides for the generation and appropriate attachment of quantifiers
governing the interpretations it produces. Central to this capability is the
division of the interpretation of a constituent into two parts: a SEM that
is to be inserted into the appropriate slot of the schema for some higher
constituent, and a QUANT that serves as a ‘‘collar’’ of higher operators
that is to be passed up to some higher level of the tree (around which the
collar will be “worn”). A quantifier to be attached to some higher con-
stituent is represented as a schema, which itself contains a slot into which

36 W. A. WOODS

the interpretation of that higher constituent is to be inserted. This slot
(the “hole” in the collar) is indicated by a marker DLT.

In the unquantified example sentence considered in Section 6.1, the
SEM of the subject noun phrase is simply S10046, and the QUANT is
the “empty” collar DLT. The quantifier schema in the second example
would be represented as

(FOR EVERY X / SAMPLE ; DLT).

6.7.1 Steps in Interpretation

The general procedure for interpreting a construction is

a) Match an interpretation rule against the construction, subject to
the control of the rule tree.

b) If it matches, then determine from the right-hand side of the rule
the set of constituent nodes that need to be interpreted.

c) Call for the interpretation of all of the constituents required, as-
sociate their SEMs with the slots in the schema that they are to fill, and
gather up all of the QUANTs that are generated by those interpretations.
Call a function SORTQUANT to determine the order in which those
quantifiers (if there are several) should be nested.

Depending on an operator in the right-hand side of rule, either
attach the quantifiers so generated around the outside of the current
schema, or pass them further up the tree as the QUANT of the resulting
interpretation.

If multiple matches are to be combined with an AND or OR, it is
their SEMs that are so combined. Their QUANTs are nested one inside
the other to produce the QUANT of the result.

d)

e)

6.7.2 Quantifier Passing Operators

There are three principal operators for use in the right-hand sides of
rules to determine the behavior of quantifier passing up the tree. These
are the operators PRED, QUOTE, and QUANT. The first indicates
that the schema it contains is a predication that will accept quantifiers
from below; it causes any quantifiers that arise from constituent inter-
pretations to be attached around the current schema to become part of
the resulting SEM. The QUANT associated with such an interpretation
will be the empty QUANT DLT. The operator QUANT, on the other
hand, indicates that the schema it contains is itself a quantifier schema,
and that the result of its instantiation is to be passed up the tree (together
with other quantifiers that may have resulted from constituent interpre-
tations) as the QUANT of the interpretation. The SEM associated with

NATURAL LANGUAGE QUESTION ANSWERING 37

such an interpretation is the variable name that is being governed by the
quantifier. The operator QUOTE is used around a schema that is trans-
parent to quantifier passing, so that any quantifiers that accumulate from
constituent interpretations are simply aggregated together and passed on
up the tree as the QUANT of the interpretation. The SEM of such an
interpretation is simply the instantiated schema inside the QUOTE.

In the LUNAR implementation, a function SEMSUB, which substi-
tutes the SEMs of lower interpretations into the right-hand sides of rules,
maintains a variable QUANT to accumulate the nesting of quantifiers
returned from the lower interpretations. Then, after making the substi-
tutions, the right-hand side of the rule is evaluated to determine the SEM-
QUANT pair to be returned. The result of the evaluation is the desired
SEM of the pair, and the value of QUANT (which may have been
changed as a side effect of the evaluation) is the QUANT of the pair.
The operators PRED and QUANT in the right-hand sides of rules ma-
nipulate the variable QUANT to grab and insert quantifiers.

7. Problems of Interpretation

7.1 The Order of Quantifier Nesting

In the general quantification schema

(FOR (quant) X / (class) : (p X) ; (q X))

both the expressions (p X) and (q X) can themselves be quantified expres-
sions. Sentences containing several quantified noun phrases result in
expressions with a nesting of quantifiers dominating the interpretation of
the main clause. For example, the sentence “Every sample contains
some element” has a representation

(FOR EVERY X / SAMPLE ;
(FOR SOME Y / ELEMENT ;

(CONTAIN X Y))).

Alternative interpretations of a sentence corresponding to different
orderings of the quantifiers correspond to different relative nestings of
the quantifier operations. For example, the above sentence has an un-
likely interpretation in which there is a particular element that is con-
tained in every sample. The representation of this interpretation is

(FOR SOME Y / ELEMENT ;
(FOR EVERY X / SAMPLE ;

(CONTAIN X Y))).

38 W. A. WOODS

Thus, in interpreting a sentence, it is necessary to decide the appropriate
order of nesting of quantifiers to be used. In general, this ordering is the
left-to-right order of occurrence of the quantifiers in the sentence, but
this is not universally so (for example, when a function is applied to a
quantified noun phrase-see functional nesting below). In situations
where the order of quantifiers is not otherwise determined, LUNAR
assumes the left-to-right order of occurrence in the sentence.

7.2 Interaction of Negations with Quantifiers

The construction of an interpretation system that will handle sentences
containing single instances of a quantification or simple negation without
quantification is not difficult. What is difficult is to make it correctly
handle sentences containing arbitrary combinations of quantifiers and
negatives. The interpretation mechanism of LUNAR handles such con-
structions fairly well. Consider the sentence “Every sample does not
contain silicon.” This sentence is potentially ambiguous between two
interpretations:

(NOT (FOR EVERY X / SAMPLE ; (CONTAIN X SI02)))

(FOR EVERY X / SAMPLE ; (NOT (CONTAIN X SI02))).

The difference lies in the relative scopes of the quantifer and the negative.
One interpretation of the above sentence is handled in LUNAR by the

interaction of the rules already presented. The interpretation of the PRE-
RULE PR-NEG, discussed in Section 6.5.2, has the right-hand side
(PRED (NOT (# 0 SRULES))), whose governing operator indicates that
it grabs quantifiers from below. The interpretation of the noun phrase
“every sample” produces the quantifier “collar”:

(FOR EVERY X / SAMPLE : T ; DLT)

which is passed up as the QUANT together with the SEM X. The right-
hand side of S:CONTAIN is embedded in the operator QUOTE, which
is transparent to quantifiers, producing the SEM (CONTAIN X SI02)
and passing on the same QUANT. The top level rule PR-NEG now
executes its instantiated right-hand side:

(PRED (NOT (CONTAIN X SI02)))

and

which grabs the quantifier to produce the interpretation:

(FOR EVERY X / SAMPLE : T ; (NOT CONTAIN X SI02))).

The alternative interpretation of the above sentence can be obtained

NATURAL LANGUAGE QUESTION ANSWERJNG 39

by an alternative PRERULE for sentential negatives whose right-hand
side is

(BUILDQ (NOT #) (PRED (# 0 SRULES)))

where BUILDQ is an operator whose first argument is a literal schema
into which it inserts the values of its remaining arguments. In this case,
the PRED expression produces

(FOR EVERY X / SAMPLE : T ; (CONTAIN X SI02))

and the BUILDQ produces

(NOT (FOR EVERY X / SAMPLE : T ; (CONTAIN X SI02))).

If these two negative rules both existed in the list PRERULES, then
the LUNAR interpreter when interpreting a negative sentence would find
them both and would produce both interpretations. In the case where no
quantifier is returned by the subordinate SRULES interpretation, then
both rules would produce the same interpretation and the duplicate could
be eliminated. In the case where a quantifier is returned, then the two
interpretations would be different and a genuine ambiguity would have
been found, resulting in a request by the system to the user to indicate
which of the two interpretations he intended.

However, if one decides to legislate that only one of the two possible
scope choices should be perceived by the system, then only the corre-
sponding rule for negation should be included in the PRERULES list.
This is the choice that was taken in the demonstration LUNAR system.
Since the interpretation of the negative operator outside the scope of the
quantifier can be unambiguously expressed using locutions such as “Not
every sample contains silicon,” LUNAR’S rules treat sentential negation
as falling inside any quantifiers (as expressed by the PR-NEG rule dis-
cussed previously). Rules for interpreting determiners such as “not
every” can easily be written to produce quantifier expressions such as

(NOT (FOR EVERY X / (class) ; DLT))

to give interpretations in which the negative operator is outermost.

7.3 Functional Nesting and Quantifier Reversal

As previously mentioned, an interesting example of quantifier nesting
occurs when an argument to a function is quantified. As an example,
consider the flight schedules request, “List the departure times from
Boston of every American Airlines flight that goes from Boston to Chi-
cago.” This sentence has a bizarre interpretation in which there is one

40 W. A. WOODS

time at which every American Airlines flight from Boston to Chicago
departs. However, the normal interpretation requires taking the subor-
dinate quantifier “every flight” and raising it above the quantifier of the
higher noun phrase “the departure time.” Such nesting of quantifiers is
required when the range of quantification of one of them (in this case,
the departure times) contains a variable governed by the other (in this
case, the flights).

In the logical representation of the meaning of such sentences, the
higher quantifier must be the one that governs the variable on which the
other depends. This logical dependency is exactly the reversal of the
“syntactic dependency” in the parse tree, where the argument to the
function is contained within (i.e., “dependent” on) the phrase the func-
tion heads. The LUNAR system facility for interpreting such construc-
tions automatically gets the preferred interpretation, since the quantifiers
from subordinate constituents are accumulated and nested before the
quantifier for a given noun phrase is inserted into the quantifier collar.

To illustrate the process in detail, consider the interpretation of the
above example. In the processing of the constituents of the noun phrase
whose head is “departure time,” the quantifier

(FOR EVERY X2 I FLIGHT : (EQUAL (OWNER X2) AMERICAN) ;
DLT)

is returned from the interpretation of the “flight” noun phrase (which
gets the SEM X2). The temporary QUANT accumulator in the function
SEMSUB (discussed in Section 6.7), at this point contains the single
‘‘empty” quantifier collar DLT. This is now modified by substituting the
returned quantifier for the DLT, resulting in the QUANT accumulator
now containing the returned quantifier

(FOR EVERY X2 / FLIGHT : (EQUAL (OWNER X2) AMERICAN) ;
DLT)

(with its DLT now marking the “hole” in the collar).

When all of the subordinate constituents have been interpreted, and
their SEM’s have been inserted into the right-hand side schema of the
rule interpreting the “departure time” noun phrase, the resulting instan-
tiated schema will be

(QUANT (FOR THE X1 / (DTIME X2 BOSTON) : T ; DLT) 1.
This is then evaluated, again resulting in the DLT in the temporary
QUANT accumulator being replaced with this new quantifier (thus in-
serting the definite quantification THE inside the scope of the universal

NATURAL LANGUAGE QUESTION ANSWERING 41

quantifier EVERY that is already there). The result of this interpretation
is to return the SEM-QUANT pair consiting of the SEM X1 and the
QUANT

(FOR EVERY X2 / FLIGHT : (EQUAL (OWNER X2) AMERICAN) ;
(FOR THE X 1 / (DTIME X2 BOSTON) : T ; DLT)).

The right-hand side for the next higher rule (the one that interprets the
command “list x”) contains a PRED operator, so that when its instan-
tiated schema

(PRED (PRINTOUT XI))

is executed, i t will grab the quantifier collar from below to produce the
interpretation

(FOR EVERY X2 / FLIGHT : (EQUAL (OWNER X2) AMERICAN) ;
(FOR THE XI / (DTIME X2 BOSTON) : T ;

(PRINTOUT XI))).

7.4 Relative Clauses

One of the features of the LUNAR system that makes it relatively
powerful in the range of questions it can handle is its general treatment
of relative clause modifiers. This gives it a natural ability to handle many
questions that would be awkward or impossible to pose to many data
management systems. Relative clauses permit arbitrary predicate restric-
tions to be imposed on the range of quantification of some iterative
search. The way in which relative clauses are interpreted is quite simple
within LUNAR’S general semantic interpretation framework. I t is done
by a general RRULE R:REL, which is implicitly included in the
RRULES for any noun phrase.

The rule R : REL will match a noun phrase if it finds a relative clause
structure modifying the phrase. On each such relative clause, it will
execute a function RELTAG that will find the node in the relative clause
corresponding to the relative pronoun (“which” or “that”), and will
mark this found node with the same variable X that is being used for the
noun phrase that the relative clause modifies. This pronoun will then
behave as if it had already been interpreted and assigned that variable as
its SEM. The semantic interpreter will then be called on the relative
clause node, just like any other sentence being interpreted, and the result
will be a predicate with a free occurrence of the variable X. This resulting
predicate is then taken, together with any other RRULE predicates ob-
tained from adjectival and prepositional phrase modifiers, to form the
restriction on the range of quantification of the modified noun phrase.

42 W. A. WOODS

One consequence of a relative clause being interpreted as a subordinate
S node (in fact, a consequence of any subordinate S node interpretation)
is that, since the PRERULES used in interpreting the subordinate S node
all have PRED operators in their right-hand sides, any quantifiers pro-
duced by noun phrases inside the relative clause will be grabbed by the
relative clause itself and not passed up to the main clause. This rules out
interpretations of sentences like “List the samples that contain every
major element” in anomalous ways such as

(FOR EVERY X / MAJORELT : T ;
(FOR EVERY Y / SAMPLE : (CONTAIN Y X) ;

(PRINTOUT Y)))
(i.e., “For every major element list the samples that contain it”) instead
of the correct

(FOR EVERY Y / SAMPLE :
(FOR EVERY X / MAJORELT : T : (CONTAIN Y X)) ;
(PRINTOUT Y)).

Except in certain opaque context situations, this seems to be the pre-
ferred interpretation. As in other cases, however, although LUNAR’S
interpretation system is capable of producing alternative interpretations
for some other criteria to choose between, the demonstration prototype
instead uses rules that determine just those interpretations that seem to
be most likely in its domain.

7.5 Other Types of Modifiers
In addition to relative clauses, there are other kinds of constructions

in English that function as predicates to restrict the range of quantifica-
tion, These include most adjectives and prepositional phrases. They are
interpreted by RRULES that match the appropriate structures in a noun
phrase and produce a predicate with free variable X (which will be
instantiated with the variable of quantification for the noun phrase being
interpreted). I will call such modifiers predicutors since they function as
predicates to restrict the range of quantification. Examples of predicators
are modifiers like “recent” and “about olivine twinning” in phrases like
“recent articles about olivine twinning”, The interpretation of this phrase
would produce the quantifier

(FOR GEN X / DOCUMENT :
(AND (RECENT X) (ABOUT X (OLIVINE TWINNING))) ; DLT).

Note that not all adjectives and prepositional phrases are interpreted
as just described. Many fill special roles determined by the head noun,

NATURAL LANGUAGE QUESTION ANSWERING 43

essentially serving as arguments to a function. For example, in a noun
phrase such as “the silicon concentration in S10046,” the adjective “sil-
icon” is specifying the value of one of the arguments to the function
“concentration,” rather than serving as an independent predicate that
the concentration must satisfy. (That is, this phrase is not equivalent to
“the concentration in S10046 which is silicon,” which does not make
sense). Similarly, the prepositional phrase “in S10046” is filling the same
kind of argument role, and is not an independent modifier. I will call this
class of modifiers role fillers.

In some cases, there are modifiers that could either be treated as
restricting predicates or as filling argument roles in a function, depending
on the enumeration function that is being used to represent the meaning
of the head noun. For example, a modifier like “to Chicago” in “flights
to Chicago” could either be interpreted as an independent predicate
(ARRIVE X CHICAGO) modifying the flight, or as an argument to a
specialized flight enumeration function FLIGHT-TO which enumerates
flights to a given destination. In the flight schedules application, the
former interpretation was taken, although later query optimization rules
(see smart quantifiers, below) were able to transform the resulting MRL
expression to a form equivalent to the latter to gain efficiency.

In general English, there are cases in which it seems moot whether one
should treat a given phrase as filling an argument role or as a restricting
predicate. However, there are also clear cases where the head noun is
definitely a function and cannot stand alone without some argument being
either explicitly present or inferable from context. In these cases such
modifiers are clearly role fillers. On the other hand, the diversity of
possible modifiers makes it unlikely that all adjectives and prepositional
phrases could be interpretable as role fillers in any general or economical
fashion. Thus, the distinction between predicators and role fillers seems
to be necessary.

There is another use of a modifier that neither fills an argument role
nor stands as an independent predicate, but rather changes the interpre-
tation of the head noun. An example is “modal” in “modal olivine
analyses.” This adjective does not describe a kind of olivine, but rather
a kind of analysis that is different from the normal interpretation one
would make of the head “analysis” by itself. Such modifiers might be
called specializers since they induce a special interpretation on the head
noun. Note that these distinctions in types of modification refer to the
role of modifier plays in a given construction, not to anything inherent
in the modifier itself.

The sentence “List modal olivine analyses for lunar samples that con-
tain silicon” contains a mixture of the different kinds of modifiers. The

44 W. A. WOODS

presence of the specializer adjective “modal” blocks the application of
the normal NRULE N : ANALYSIS (it has a NOT template that checks
for it), and it enables a different rule N : MODAL-ANALYSIS instead.
The adjective “olivine” and the prepositional phrase are both interpreted
by REFS in the right-hand side of this rule to fill argument slots in the
enumeration function DATALIN E. There are no predicators modifying
“analyses,” but there is a potential predicator “lunar” modifying ”Sam-
ples” and a restrictive relative clause also modifying samples. In
LUNAR, the apparently restrictive modifier “lunar” modifying a word
like “samples” is instead interpreted as a specializer that does not make
a difference, since LUNAR knows of no other kind of sample. However,
this is clearly not a limitation of the formalism.

The relative clause modifying “samples” is interpreted as described
above to produce the predicate

(CONTAIN X2 SI02).

The interpretation of the noun phrase “lunar samples that contain sili-
con” thus consists of the SEM X2 and the QUANT

(FOR GEN X2 / SAMPLE : (CONTAIN X2 SI02) ; DLT).

This SEM-QUANT pair is returned to the process interpreting the noun
phrase “modal olivine analyses for ... ,” which in turn produces a SEM
X1 and a QUANT

(FOR GEN X2 / SAMPLE : (CONTAIN X2 SI02) ;
(FOR GEN X 1 / (DATALINE X2 OVERALL OLIV) : T ;

DLT)).

This is returned to the rule interpreting the main verb “list,” whose right-
hand side produces the SEM (PRINTOUT XI) with the same QUANT
as above. This process returns to the PRERULE for positive imperative
sentences, where the quantifiers are grabbed to produce the interpretation

(FOR GEN X2 / SAMPLE : (CONTAIN X2 3 0 2) ;
(FOR GEN X 1 / (DATALINE X2 OVERALL OLIV) : T :

(PRINTOUT X1))).

7.6 Averages and Quantifiers

An interesting class of quantifier interaction problems occurs with
certain operators such as “average,” “sum,” and “number.” In a sen-
tence such as “What is the average silicon concentration in breccias?”
it is clear that the generic “breccias” is not to be interpreted as a
universal quantifier dominating the average computation, but rather the

NATURAL LANGUAGE QUESTION ANSWERING 45

average is to be performed over the set of breccias. A potential way of
interpreting such phrases would be to treat average as a specializer
adjective which, when applied to a noun like “concentration,” produces
a specialized enumeration function that computes the average. This spe-
cial interpretation rule, would then interpret the class being averaged
over in a special mode as a role filler for one of the arguments to the
AVERAGE-CONCENTRATION function. However, this approach
would lack generality, since it would require a separate interpretation
rule and a separate AVERAGE-X function for every averageable meas-
urement X. Instead, one would like to treat average as a general operator
that can apply to anything averageable. Doing this, and making it interact
correctly with various quantifiers is handled in the LUNAR system by
a mechanism of some elegance and generality. I will describe here the
interpretation of averages; the interpretations of sums and other such
operators are similar.

Note that there are two superficial forms in which the average operator
is used: one is a simple adjective modifying a noun (“the average
concentration. . .”), and one is as a noun referring to a function
that is explicitly applied to an argument (“the average of concentra-
tions . . .”). LUNAR’S grammar standardizes this variation by
transforming the first kind of structure into the second (effectively in-
serting an “of ... PL” into the sentence). As a result, average always
occurs in syntactic tree structures as the head noun of a noun phrase
with a dependent prepositional phrase whose object has a “NIL ... PL”
determiner structure and represents the set of quantities to be averaged.

In interpreting such noun phrases, the NRULE invoked by a head
noun “average” or “mean” calls for the interpretation of the set being
averaged with the special TYPEFLAG SET. This will result in that
node’s being interpreted with a special DRULE D:SETOF, which will
construct an intensional set representation for the set being averaged.
The data base function AVERAGE knows how to use such an intensional
set to enumerate members and compute the average. The NRULE for
“average” is

[N : AVERAGE
(NP.N (MEM I (MEAN AVERAGE)))
(NP.PP (MEM 2 (QUANTITY)))
+ (QUOTE (SEQL (AVERAGE X / (# 2 2 SET)))) 1.

7.7 Short ScopelBroad Scope Distinctions

Another interesting aspect of quantifier nesting is a fairly well-known
distinction between so called short-scope and broad-scope interpretation

46 W. A. WOODS

quantifiers. For example, Bohnert and Backer (1967) present an account
of the differences between “every” and “any” and between “some”
and “a” in contexts such as the antecedents of if-then statements by
giving “any” and “some” the broadest possible scope and “every” and
“a” the narrowest. For example, using the LUNAR MRL notation,

If any soldier stays home, there is no war

(FOR EVERY x / soldier ; (IF (home x)
THEN (not war))

If every soldier stays home, there is no war

(IF (FOR EVERY x / soldier ; (home x))
THEN (not war))

If some soldier stays home, there is no war

(FOR SOME x / soldier ; (IF (home x)
THEN (not war)))

If a soldier stays home, there is no war

(IF (FOR SOME x / soldier ; (home x))
THEN (not war)).

The scope rules of Bohnert and Backer are enforced rules of an arti-
ficial language that approximates English and are not, unfortunately,
distinctions that are always followed in ordinary English. In ordinary
English, only a few such distinctions are made consistently, while in
other cases the scoping of quantifiers appears to be determined by which
is most plausible (see discussion of plausibility evaluation in Section
10.5).

In LUNAR, a slightly different form of this shodbroad scope distinc-
tion arose in the interaction of operators like average with universal
quantifiers. For example, the sentence “List the average concentration
of silicon in breccias” clearly means to average over all breccias, while
“List the average concentration of silicon in each breccia” clearly means
to compute a separate average for each breccia. (In general, there are
multiple measurements to average even for a single sample.) The senten-
ces “List the average concentration of silicon in every breccia,” and
“List the average concentration of silicon in all breccias” are less clear,

NATURAL LANGUAGE QUESTION ANSWERING 47

but it seems to be that the average over all breccias is slightly preferred
in these cases. At any rate, the treatment of quantifiers needs to be able
to handle the fact that there are two possible relative scopings of the
average operator with universal quantifiers, and the fact that the choice
is determined at least for the determiner “each” and for the ‘‘generic”
or NIL-PL determiner.

LUNAR handles these scope distinctions for the “average” operator
by a general mechanism that applies to any operator that takes a set as
its argument. As discussed above, the right-hand side of the
N:AVERAGE rule calls for the interpretation of the node representing
the set being averaged over with TYPEFLAG SET. This causes a
DRULE D: SET OF to be used for interpreting that node. The right-hand
side of D: SETOF is

(SETGEN (SETOF X / (# 0 NRULES) : (# 0 RRULES)))

where SETGEN is a function that grabs certain quantifiers coming from
subordinate interpretations and turns them into UNION operations in-
stead. The generic quantifier is grabbed by this function and interpreted
as a union. However, the quantifier EACH is not grabbed by SETGEN
but is passed on up as a dominating quantifier. Thus, the sentence “What
is the average concentration of silicon in breccias?” becomes

(FOR THE X4 / (SEQL (AVERAGE X5 i
(UNION X7 / (SEQ TYPECS) : T :

(PRINTOUT X4))
(SETOF X6 i (DATALINE X7 OVERALL SI02) : T)))) : T ;

(i.e., the average is computed over the set formed by the union over all
type C rocks X7 of the sets of measurements of S102 in the individual
X7’s). On the other hand, “What is the average concentration of silicon
in each breccia?” becomes

(FOR EACH XI2 i (SEQ TYPECS) : T ;
(FOR THE X9 / (SEQL (AVERAGE X10 /

(SETOF XI 1 / (DATALINE XI2 OVERALL SI02) : T))) : T ;
(PRINTOUT X9)))

(i.e., a separate average is computed for each type C rock X12).

7.8 Wh Questions

In addition to simple yesho questions and imperative commands to
print the results of computations, LUNAR handles several kinds of so-

48 W. A. WOODS

called wh questions. Examples are “What is the concentration of silicon
in S10046?”, “Which samples contain silicon?”, and “How many sam-
ples are there?” These fall into two classes: those in which an interro-
gative pronoun stands in the place of an entire noun phrase, as in the
first example, and those in which an interrogative determiner introduces
an otherwise normal noun phrase. In both cases, the noun phrase con-
taining the interrogative word is usually brought to the front of the
sentence from the position that it might otherwise occupy in normal
declarative word order, but this is not always the case.

7.8.1 In terro ga five Determ he rs

The natural representation of the interrogative determiners would seem
to be to treat them just like any other determiner and represent a sentence
such as the second example above as

S Q
NP DETWHQ

N SAMPLE
N U PL

AUX TNS PRESENT
V P VCONTAIN

NP NPR SILICON

The interpretation procedure we have described seems to work quite well
on this structure using a DRULE that matches the interrogative noun
phrase and generates the quantifier

(FOR EVERY X / (# 0 NRULES) : (AND (# 0 RRULES) DLT) ;
(PRINTOUT X)).

Note that the DLT in the quantifier (where the interpretation of the main
clause is to be inserted) is part of the restriction on the range, and the
quantified operator is a command to print out the answer. The structure
of the quantifier in this case seems somewhat unusual, but the effect is
correct and the operation is a reasonably natural one given the capabilities
of the semantic interpreter.

However, when we try to apply this kind of analysis to conjoined

NATURAL LANGUAGE QUESTION ANSWERING 49

sentences, such as “What samples contain silicon and do not contain
sodium?”, the standard kind of deep structure assigned by a transfor-
mational grammar to conjoined sentences is not compatible with this
interpretation. The usual reversal of the conjunction reduction transfor-
mations in a transformational grammar would produce a structure some-
thing like

S AND
S Q

NP DETWHQ
N SAMPLE
NU PL

AUX TNS PRESENT
V P VCONTAIN

NP NPR SILICON
S Q

NEG
NP DETWHQ

N SAMPLE
NU PL

AUX TNS PRESENT
V P VCONTAIN

NP NPR SODIUM.

This structure corresponds to the conjunction of the two questions “What
samples contain silicon?” and “What samples do not contain sodium?”,
which is the interpretation that it would receive by the LUNAR rules
with the above DRULE for wh-determiners. However, this is not what
the original conjoined question means; the intended question is asking
for samples that simultaneously contain silicon and not sodium.

In order to handle such sentences, it is necessary to distinguish some
constituent that corresponds to the conjunction of the two predicates
“contain silicon” and “not contain sodium,” which is itself a constituent
of a higher level “what samples” operator. To handle such constructions
correctly for both conjoined and nonconjoined constructions, LUNAR’S
ATN grammar of English was modified to assign a different structure to
wh-determiner questions than the one that is assigned to other determi-
ners. These sentences are analyzed as a special type of sentence, a noun
phrase question (NPQ), in which the top level structure of the syntactic
representation is that of a noun phrase, and the matrix sentence occurs
as a special kind of subsidiary relative clause. For example, the sentence

50 W. A. WOODS

“Which samples contain silicon?” is represented syntactically as

S NPQ
NP DETWHICHQ

N SAMPLE
NU PL
S QREL

NP DETWHR
N SAMPLE
NU PL

AUX TNS PRESENT
VP VCONTAIN

NP DET NIL
N SILICON
NU SG.

This structure provides an embedded S node inside the higher level
question, whose interpretation is a predicate with free variable bound in
the question operator above. This embedded S node can be conjoined
freely with other S nodes, while remaining under the scope of a single
question operator. In this case, the appropriate DRULE (for a wh-deter-
miner in a plural NPQ utterance) is simply

[D 1 WHQ-PL
(NP.DET (AND (MEM I WHQ) (EQU 2 PL)))

(QUANT (FOR EVERY X / (# 0 NRULES) :
--*

(# 0 RRULES) ; (PRINTOUT X))) I.

Since the matrix sentence has been inserted as a relative clause in the
syntactic structure assigned by the grammar, it will be interpreted by the
RRULE R:REL in the subordinate interpretation (# 0 RRULES). A
similar rule for interpreting singular noun phrases (“which sample con-
tains. , ,”) produces a quantifier with (quant) = THE, instead of
EVERY, thus capturing the presupposition that there should be a single
answer.

All of the interrogative determiners, “which,” “what,” and “how
many” are treated in the above fashion. The right-hand side of the “how

NATURAL LANGUAGE QUESTION ANSWERING 51

many” rule is

(FOR THE X / (NUMBER X / (# 0 NRULES) : (# 0 RRULES)) ;
(PRINTOUT X)).

Here again, the interpretation of the matrix sentence is picked up in the
call (# 0 RRULES). (The use of the same variable name in two different
scopes does not cause any logical problems here, so no provision was
made in LUNAR to create more than one variable for a given noun
phrase.)

7.8.2 lnterro ga tive Pro nouns

A general treatment of the interrogative pronouns would require mod-
ifications of the assigned syntactic structures similar to the ones discussed
above for interrogative determiners in order to handle conjunctions cor-
rectly. That is, sentences such as “What turns generic quantifiers into
set unions and passes ‘each’ quantifiers through to a higher level?” seem
to require an embeded S node to serve as a conjoined proposition inside
a single “what” operator. However, it is far more common for conjoined
questions with interrogative pronouns to be interpreted as a conjunction
of two separate questions. This is especially true for conjoined “what is
...” questions. For example, “What is the concentration of silicon in
S10046 and the concentration of rubidium in S10084?” is clearly not
asking for a single number that happens to be the value of the concen-
tration in both cases.

The LUNAR system contains rules for handling interrogative pronouns
only in the special case of “what is. . .” questions. In this special case,
conjoined questions fall into two classes, both of which seem to be
handled correctly without special provisions in the grammar. In questions
where the questioned noun phrase contains an explicit relative clause,
that clause will contain an S node where conjunctions can be made and
LUNAR’S current techniques will treat this as one question with a con-
joined restriction (e.g., “What is the sample that contains less than 15%
silicon and contains more than 5% nickel?”). On the other hand, when
there is no explicit relative clause, LUNAR will interpret such questions
as a conjunction of separate questions (e.g., “What is the concentration
of silicon in S10046 and the concentration of rubidium in S10084?”).

The conventional structure assigned to “what is. . .” sentences by a
transformational grammar represents the surface object as the deep sub-
ject, with a deep verb “be” and predicate complement corresponding to

52 W. A. WOODS

the interrogative pronoun “what.” For example, in LUNAR the question
“What is the concentration of silicon in S10046?” becomes

S Q
NP DETTHE

N CONCENTRATION
NU SG
PP PREPOF

NP DET NIL
N SILICON
NU SG

NP NPR S10046
PP PREPIN

AUX TNS PRESENT
VP V B E

NP DET WHQ
N THING
NU SG/PL

A special SRULE for the verb “be” with complement “WHQ THING
SG/PL” handles this case with a right-hand side schema:

(QUOTE (PRINTOUT (# 1 1)))

where the REF (# 1 1) refers to the subject noun phrase.

“what” would involve a DRULE whose right-hand side was
A somewhat more general treatment of the interrogative pronoun

(FOR EVERY X / THING : DLT ; (PRINTOUT X) 1.
Where the interpretation of the matrix sentence is to be inserted as a
restriction, on the range of quantification and the overall interpretation
is a command to print out the values that satisfy it. (THING in this case
is meant to stand for the universal class.) One would not want to apply
this rule in general to the simple “What is ...” questions as above, since
it would result in an interpretation that was less efficient (i.e., would
enumerate all possible things and try to filter out the answer with an
equality predicate). For example, “what is the concentration of silicon
in S10046” would be interpreted

(FOR THE X / (DATALINE SIN46 OVERALL SI02) : T ;
(FOR EVERY Y / THING : (EQUAL X Y) ;

(PRINTOUT Y)))

NATURAL LANGUAGE QUESTION ANSWERING 53

instead of

(FOR THE X / (DATALINE S 10046 OVERALL SI02) : T ;
(PRINTOUT X)) .

Thus, one would still want to keep the special “what is ...” rule and
LUNAR would only use the general rule in cases where the ”what is ...”
rule did not apply. (When the “what is ...” rule does apply, it does not
even call for the interpretation of the “what” noun phrase that it has
matched, so the general rule would not be invoked.)

Alternatively, one could use the general rule for all cases and then
perform post-interpretive query optimization (see Section 8) to transform
instances of filtering with equality predicates to a more efficient form
that eliminates the unnecessary quantification.

7.8.3 Other Kinds of Wh Questions
Note that LUNAR interprets “what is ...” questions only as a request

for the value of some function or the result of some search or computa-
tion, and not as requesting a definition or explanation. For example if
LUNAR is asked “what is a sample” it will respond with an example
(e.g., “S10046”), and if it is asked “what is S10046,” it will respond
“S10046.” LUNAR is not aware of the internal structure of the defining
procedures for its terms, nor does it have any intensional description of
what samples are, so it has no way of answering the first type of question.
There is no difficulty, however, in defining another rule for “what is
...” to apply to proper nouns and produce an interpretation with an
operator NAME-CLASS (instead of PRINTOUT) that will print the class
of an individual instead of its name. “What is S10046?” would then be
interpreted as (NAME-CLASS S 10046), which would answer “a sam-
ple.”

Getting LUNAR to say something more complete about how S10046
differs from other samples, such as “a sample that contains a large olivine
inclusion,” is another matter. Among other problems, this would begin
to tread into the area of pragmatics, where considerations such as the
user’s probable intent in asking the question and appropriateness of
response in a particular context, as well as semantic considerations of
meaning, become an issue (see Section 11.5). All of this is well beyond
the scope of systems like LUNAR. However, deciding what semantic
representation to assign as the intent of such a question is not nearly as

54 W. A. WOODS

difficult as deciding what the defining procedure for some of the possible
intents should be. LUNAR’S mechanisms are suitable for generating the
alternative possible semantic representstions.

8. Post-Interpretive Processing

As mentioned before, the LUNAR meaning representation language
has been designed both as a representation of executable procedures and
as a symbolic structure that can be manipulated as an intensional object.
Although every expression in the LUNAR MRL has an explicit semantics
defined by its straightforward execution as a procedure, that procedure
is frequently not the best one to execute to answer a question or carry
out a command. For example, in the flight schedules applications, the
literal interpretation of the expression

(FOR EVERY X / FLIGHT : (CONNECT X BOSTON CHICAGO) ;
(PRINTOUT X))

is to enumerate all of the flights known to the system, filtering out the
ones that do not go from Boston to Chicago, and printing out the rest.
However, in a reasonable data base for this domain, there would be
various indexes into the flights, breaking them down by destination city
and city of origin. If such an index exists, then a specialized enumeration
function FLIGHT-FROM-TO could be defined for using the index to
enumerate only flights from a given city to another. In this case, the
above request could be represented as

(FOR EVERY X / (FLIGHT-FROM-TO BOSTON CHICAGO) : T ;
(PRINTOUT X)).

which would be much more efficient to execute.
Given the possibility of using specialized enumeration functions, one

can then either write special interpretation rules to use the more specific
enumeration function in the cases where it is appropriate, or one can
perform some intensional manipulations on the interpretation assigned
by the original rules to transform it into an equivalent expression that is
more efficient to execute. The first approach was used in the original
flight schedules system. An approach similar to the latter was used in
the grammar information system, and to some extent in LUNAR, by

NATURAL LANGUAGE QUESTION ANSWERING 55

using “smart” quantifiers (see below). Recently, Reiter (1977) has pre-
sented a systematic treatment of a class of query optimizations in systems
like LUNAR that interface to a relational data base.

Other post-interpretive operations on the MRL expression are per-
formed in LUNAR to analyze the quantifiers and make entries in a
discourse directory for potential antecedents of anaphoric expressions.
Subsequently, definite descriptions and pronouns can make reference to
this directory to select antecedents. I will not go into the treatment of
anaphoric expressions in this paper other than to say that the search for
the antecedent is invoked by an operator ANTEQUANT in the right-
hand side of the DRULES that interpret anaphoric noun phrases. In
general, this results in the generation of a quantifier, usually a copy of
the one that was associated with the antecedent. Occasionally, the an-
tecedent will itself fall in the scope of a higher quantifier on which it
depends, in which case such governing quantifiers will also be copied
and incorporated into the current interpretation. Some of the character-
istics of LUNAR’S treatment of anaphora are covered in Nash-Webber
(1976) and woods et al . (1972).

8.1 Smart Quantifiers

In the grammar information system, a notation of “smart” quantifier
was introduced, which rather than blindly executing the quantification
procedure obtained from semantic interpretation, made an effort to de-
termine if there was a more specific enumeration function that could be
used to obtain an equivalent answer. In general, the restriction on the
range of quantification determines a subclass of the class over which
quantification is ranging. If one can find a specialized enumeration func-
tion that enumerates a subclass of the original class but is still guaranteed
to include any of the members that would have passed the original
restriction, then that subclass enumeration function can be used in place
of the original.

In the grammar information system, tables of specialized enumeration
functions, together with sufficient conditions for their use, were stored
associated with each basic class over which quantification could range.
A resolution theorem prover a la Robinson (1965) was then used to
determine whether the restriction of a given quantification implied one
of the sufficient conditions for a more specialized class enumeration
function. If so, the more specialized function was used. Unlike most
applications of resolution theorem proving, the inferences required in
this case are all very short, and since the purpose of the inference is to

56 W. A. WOODS

improve the efficiency of the quantification, a natural bound can be set
on the amount of time the theorem prover should spend before the
attempt should be given up and the original enumeration function used.

In general, sufficiency conditions for specialized enumeration functions
are parameterized with open variables to be instantiated during the proof
of the sufficiency condition and then used as parameters for the special-
ized enumeration function. The resolution theorem proving strategies
have a nice feature of providing such instantiated parameters as a result
of their proofs; e.g., by using a mechanism such as the “answer” pred-
icate of Green (1969).

Smart quantifiers were intended in general to be capable of other
operations, such as estimating the cost of a computation from the sizes
of the classes being quantified over and the depth of quantifier nesting
(and warning the user if the cost might be excessive), saving the results
of inner loop quantifications where they could be reused, interchanging
the scopes of quantification to bring things that do not change outside a
loop, etc. The capabilities actually implemented, however, are much
more limited.

8.7.7 Path Enumeration in ATN’s

Smart quantifiers were essential for efficiency in the grammar infor-
mation system’s enumeration of paths through its ATN. The system
contained a variety of specialized path enumeration functions: one for
paths between a given pair of states, one for paths leaving a given state,
one for paths arriving at a given state, one for paths irrespective of end
states, and versions of all of these for looping and nonlooping paths.
Each specialized enumeration function was associated with a parameter-
ized sufficiency condition for its use. For example, the function for
nonlooping paths leaving a given state had a table entry equivalent to

(PATHSEQ Y T) if (AND (NOLOOP X) (START X Y))

where X refers to the variable of the class being quantified over, Y is a
parameter to be instantiated, and (PATHSEQ Y T) is the enumeration
function to be used if the sufficiency condition is satisfied.

Thus, if a quantification over paths had a restriction such as (AND
(CONNECT-PATH X S/ S/VP) (NOLOOP X)) and the theorem prover
had axioms such as (CONNECT-PATH X Y Z)+(START X Y), then

NATURAL LANGUAGE QUESTION ANSWERING 57

the theorem prover would infer that the sufficiency condition (AND
(NOLOOP X) (START X Y)) is satisfied with Y equal to S/ and therefore
the specialized enumeration function (PATHSEQ S/ T) can be used.

Notice that the order of conjuncts in the restriction is irrelevant, and
the restriction need only imply the sufficiency condition not match it
exactly. In the above, there are still conditions in the restriction that will
have to be checked as a filter on the output of the specialized enumeration
function to make sure that the end of the path is at state SNP. In general,
it would be nice to remove from the restriction that portion that is already
guaranteed to be satisfied by the new enumeration function, but that is
easier said than done. In the grammar information system the original
restriction was kept and used unchanged.

8.1.2 Document Retrieval in LUNAR

In the LUNAR system, a special case of smart quantifiers, without a
general theorem prover, is used to handle enumeration of documents
about a topic. When the FOR function determines that the class of objects
being enumerated is DOCUMENT, it looks for a predicate (ABOUT X
TOPIC) in the restriction (possibly in the scope of a conjunction but not
under a negative). It then uses this topic as a parameter to an inverted
file accessing routine which retrieves documents about a given topic.

8.2 Printing Quantifier Dependencies

The LUNAR MRL permits the natural expression of fairly complex
requests such as “What is the average aluminum concentration in each
of the type c rocks?” The interpretation of this request would be

(FOR EVERY X / (SEQ TYPECS) : T ;

: T ; (PRINTOUT Y))).
(FOR THE Y I (AVERAGE Z / (DATALINE X OVERALL AL203))

If the PRINTOUT command does nothing more than print out a repre-
sentation for the value of its argument, the result of this command will
be nothing more than a list of numbers, with no indication of which
number goes with which of the rocks. Needless to say, this is usually not
what the user expected.

58 W. A. WOODS

For special classes of objects, say concentrations, a pseudo-solution
to this problem would be to adopt a strategy of always printing out all
conceivable dependencies for that object (e.g., the sample, phase, and
element associated with that concentration). This would be sufficient to
indicate what dependencies each answer had on values of arguments, but
would take no account of which of those dependencies was currently
varying and which were fixed by the request. Moreover, this approach
would not work in the above case, since the objects being printed are the
results of a general purpose numerical averaging function, which does
not necessarily have any dependencies, depending on what is being av-
eraged and what classes are being averaged over.

LUNAR contains a general solution to this quantifier dependency
problem that is achieved by making the PRINTOUT command an opaque
operator that processes its argument in a semi-intelligent way as an
intensional object. PRINTOUT examines its argument for the occurrence
of free variables. If the argument is itself a variable, it looks up the
corresponding governing quantifier in the discourse directory (the same
directory used for antecedents of anaphoric expressions) and checks that
quantifier for occurrences of free variables. If it finds free variables in
either place, it means that the object it is about to print has a dependency
on those variables. In that case it prints out the current values of those
variables along with the value that it is about to print out. In the case of
the example above, the variable Y has the corresponding class specifi-
cation (DATALINE X OVERALL SI02) with restriction T, and is thus
dependent on the variable X, which is ranging over the rocks. As a result,
the printout from this request would look like

S10018 12.48 PCT
510019 12.80 PCT
S10021 12.82 PCT

This mechanism works for arbitrary nesting of any number of quantifiers.

9. An Example

As an example of the overall operation of the semantic interpreter to

“What is the average modal plagioclase concentration for lunar sam-

review and illustrate the preceding discussions, consider the sentence

ples that contain rubidium?”

NATURAL LANGUAGE QUESTION ANSWERING 59

This sentence has the following syntactic structure assigned to it by the
gram mar:

S Q
NP DETTHE

N AVERAGE
NU SG
PP PREPOF

NPDET NIL
ADJ MODAL
ADJ N PLAGIOC.LASE

N CONCENTRATION
NU PL
PP PREPFOR

NP DET NIL
ADJ LUNAR
N SAMPLE
NU PL
S REL

NP DETWHR
N SAMPLE
NU PL

AUX TNS PRESENT
VP VCONTAIN

NP DET NIL
N RUBIDIUM

AUX TNS PRESENT NU SG
VP V B E
NP DETWHQ

N THING
NU SG/PL.

Semantic interpretation begins with a call to INTERP looking at the
topmost S node with TYPEFLAG NIL. The function RULES looking at
an S node with TYPEFLAG NIL returns the global rule tree PRE-
RULES. These rules look for such things as yesho question markers,
sentential negations, etc. In this case, a rule PR6 matches and right-hand
side, (PRED (# 0 SRULES)), specifies a call to INTERP for the same
node with TYPEFLAG SRULES.

The function RULES looking at the S node with TYPEFLAG SRULES

60 W. A. WOODS

returns a rule tree which it gets from the dictionary entry for the head of
the sentence (the verb BE), and in this case a rule S: BE-WHAT matches.
Its right-hand side is

(PRED (PRINTOUT (# 1 1)))

specifying a schema into which the interpretation of the subject noun
phrase is to be inserted.

The semantic interpreter now begins to look at the subject noun phrase
with TYPEFLAG NIL. In this case, RULES is smart enough to check
the determiner THE and return the rule tree:

(D:THE-SG2 NIL D:THE-SG NIL D:THE-PL)

of which, the rule D: THE-SG matches successfully. The right-hand side
of this rule is

(QUANT (FOR THE X / (# 0 NRULES) : (# 0 RRULES) ; DLT))

which specifies that a quantifier is to be constructed by substituting in
the indicated places the interpretations of this same node with TYPE-
FLAGS NRULES and RRULES.

The call to interpret the subject noun phrase with TYPEFLAG
NRULES finds a list of NRULES in the dictionary entry for the word
“average,” consisting of the single rule N : AVERAGE. This rule, which
we presented previously in Section 7.6, has a right-hand side

(QUOTE (SEQL (AVERAGE X / (# 1 1 SET))))

which calls for the interpretation of the “concentration” noun phrase
with TYPEFLAG SET. The call to interpret the “average” node with
TYPEFLAG RRULES, which will be done later, will result in the empty
restriction T.

The call to interpret the “concentration” noun phrase with TYPE-
FLAG SET uses a list of rules (D:SETOF NIL D:NOT-SET) where
D : SETOF, which has been discussed previously in Section 7.7, checks
for a determiner and number consistent with a set interpretation (i.e.,
determiner THE or NIL and number PL) and D:NOT-SET will match
anything else. In this case, D: SETOF matches, with right-hand side

(SETGEN (SETOF X / (# 0 NRULES) : (# 0 RRULES)))

and calls for the interpretation of the same node with TYPEFLAGs
NRULES and RRULES. The call with NRULES finds a matching rule
N : MODAL-CONC after failing to match N : CONCENTRATION be-
cause of the presence of the adjective MODAL, which is rejected by a
negated template. N : MODAL-CONC is used to interpret modal concen-

NATURAL LANGUAGE QUESTION ANSWERING 61

trations of minerals in samples as a whole, and has the form

[N: MODAL-CONC
(NP.N (MEM 1 (CONCENTRATION)))
(OR (NP.PP (MEM 2 (SAMPLE)))

(NP.PP.PP (MEM 2 (SAMPLE)))
(DEFAULT (2 NP (DET EVERY)

(N SAMPLE)
(NU SG))))

(OR (NP.PP (MEM 2 (PHASE MINERAL ELEMENT

(NP.ADJ#2 (MEM 2 (PHASE MINERAL ELEMENT

+ (QUOTE (DATALINE (# 2 2) OVERALL (# 3 2))) 1.

OXIDE ISOTOPE)))

OXIDE ISOTOPE))))

(DEFAULT is a special kind of template that always succeeds and that
makes explicit bindings for use in the right-hand side. In the above case,
if the “concentration” noun phrase had not mentioned a sample, then
the default “every sample” would be assumed.)

N : MODAL-CONC in turn calls for the interpretations of the “sample”
noun phrase and the constituent “rubidium.” In interpreting the “sam-
ple” noun phrase, it again goes through the initial cycle of DRULES
selected by TYPEFLAG NIL looking at a noun phrase, in this case
finding a matching rule D: NIL whose right-hand side is

(QUANT (FOR GEN X / (# 0 NRULES) : (# 0 RRULES) ; DLT))

This in turn invokes an NRULES interpretation of the same phrase which
uses the rule tree (N:TYPEA N:TYPEB N:TYPEC N:TYPED NIL
N : SAMPLE) that looks first for any of the specific kinds of samples that
might be referred to, and failing any of these, tries the general rule
N : SAMPLE. N : SAMPLE checks for the head “sample” with an op-
tional adjective “lunar” or the complete phrase “lunar material” and has
a right-hand side

(QUOTE (SEQ SAMPLES))

where SEQ is the general enumeration function for known lists, and
SAMPLES is a list of all the samples in the data base.

The RRULES interpretation uses the rule tree ((AND R: SAMPLE-
WITH R : SAMPLE-WITH-COMP R : QREL R : REL R : PP R : ADJ)),
which contains a single AND group of rules, all of which are to be tried
and the results of any successful matches conjoined. The rule R:REL
matches the relative clause, tagging the relative pronoun with the variable
of interpretation X13 and then calling for the interpretation of the relative

62 W. A. WOODS

clause via the right-hand side

(PRED (# 1 1)).

The interpretation of the relative clause, like that of the main clause
begins with a set of PRERULES, of which a rule PR6 matches with right-
hand side

(PRED (# 0 SRULES)).

This again calls for the interpretation of the same node with TYPEFLAG
SRULES. This interpretation finds the rule S : CONTAIN (presented
earlier in Section 6), whose right-hand side calls for the interpretation of
its subject noun phrase (which it finds already interpreted with the van-
able of quantification from above) and its object noun phrase “rubidium.”
The latter is interpreted by a rule D: MASS, whose right-hand side looks
up the word “rubidium” in the dictionary to get its standard data base
representation RB (from a property name TABFORM) and produces the
interpretation (QUOTE RB). As a SEM-QUANT pair, this is

((QUOTE RB) DLT).

This interpretation, together with that of the relative pronoun is re-
turned to the process interpreting the “contain” clause, where they
produce (after substitution and right-hand side evaluation) the SEM-
QUANT pair

((CONTAIN X13 (QUOTE RB)) DLT).

This same SEM-QUANT pair is return unchanged by the R:REL rule
and since that is the only matching RRULE, no conjoining needs to be
done to obtain the result of the RRULES interpretation of the “sample”
noun phrase. Inserting this and the NRULES interpretation into the right-
hand side of D: NIL, and executing, produces the SEM-QUANT pair

(X13 (FOR GEN XI3 / (SEQ SAMPLES) :
(CONTAIN X13 (QUOTE RB)) ; DLT))

where the right-hand side evaluation of the QUANT operator has embed-
ded the quantifier in the QUANT accumulator and returned the SEM
X13.

We now return to the NRULES interpretation of the “concentration”
noun phrase, whose right-hand side called for the above interpretation
and now calls for the interpretation of “plagioclase.” Again, the D: MASS
rule applies, looking up the TABFORM of the word in the dictionary and
resulting in the SEM-QUANT pair

((QUOTE PLAG) DLT). .

NATURAL LANGUAGE QUESTION ANSWERING 63

The substitution of these two into the right-hand side of the rule
N : MODAL-CONC (and evaluating) produces the SEM-QUANT pair:

((DATALINE X 13 OVERALL (QUOTE PLAG))

(CONTAIN X13 (QUOTE RB)) ; DLT))
(FOR GEN X13 / (SEQ SAMPLES) :

where the quantifier from below is still being passed up.
The RRULES interpretation of the “concentration” noun phrase pro-

duces T, since there are no predicating modifiers, and the insertion of
these two into the right-hand side of the rule D: SETOF produces

(SETGEN (SETOF X12 / (DATALINE X13 OVERALL
(QUOTE PLAG)) : T))

while the quantifier accumulator QUANT contains the collar

(FOR GEN X13 / (SEQ SAMPLES) : (CONTAIN XI3 (QUOTE RB)) ;
DLT).

The execution of the function SETGEN grabs the generic quantifier from
the register QUANT, leaving QUANT set to DLT, and produces the
SEM

(UNION X13 / (SEQ SAMPLES) : (CONTAIN X13 (QUOTE RB)) ;
(SETOF X12 / (DATALINE X13 OVERALL (QUOTE PLAG)) : T)).

The quantification over samples has now been turned into a union of sets
of data lines over a set of samples.

The resulting SEM and QUANT are returned to the process that is
interpreting the ”average” phrase, where the insertion into the right-
hand side of the rule N : AVERAGE and subsequent evaluation yields
the SEM-QUANT pair

((SEQL (AVERAGE XI I / (UNION X13 /
(SEQ SAMPLES) : (CONTAIN X13 (QUOTE RB)) ;

(SETOF XI2 / (DATALINE XI3 OVERALL
(QUOTE PLAG)) : T)))) DLT).

Interpretation of the “average” phrase with TYPEFLAG RRULES
produces the SEM-QUANT pair (T DLT), and the insertion of this and
the above into the right-hand side of the DRULE D:THE-SG and eval-
uating yields the SEM-QUANT pair

(XI I (FOR THE XI I / (SEQL (AVERAGE XI I / (UNION X13 /
(SEQ SAMPLES) : (CONTAIN X13 (QUOTE RBI) ;

(SETOF X12 / (DATALINE X13 OVERALL (QUOTE PLAG)) : T))))
: T ; DLT)).

64 W. A. WOODS

This is returned to the SRULE S : BE-WHAT where the SEM XI 1 is
embedded in the right-hand side to produce:

(PRED (PKINTOUT XI I)) .

Evaluating this expression grabs the quantifier to produce the new
SEM, which the next higher rule, PR6, passes on unchanged as the final
interpretation:

(FOR THE XI I / (SEQL (AVERAGE XI 1 / (UNION XI3 /
(SEQ SAMPLES) : (CONTAIN X I 3 (QUOTE RB)) ;

(SETOF XI2 / (DATALINE XI3 OVERALL (QUOTE PLAG)) : T))))
: T : (PRINTOUT XI 1)) .

10. Loose Ends, Problems, and Future Directions

The techniques that I have described make a good start in handling the
semantic interpretation of quantification in natural English-especially in
the interaction of quantifiers with each other, with negatives, and with
operators like “average.” However, problems remain. Some reflect
LUNAR’s status as an intermediate benchmark in an intended ongoing
project. Others reflect the presence of some difficult problems that
LUNAR would eventually have had to come up against. In the remaining
sections, I will discuss some of the limitations of LUNAR’s techniques,
problems left unfaced, and trends and directions for future work in this
area.

10.1 Approximate Solutions

One characteristic of some of the techniques used in LUNAR and
many other systems is that they are only approximate solutions, A good
example of an approximate solution to a problem is illustrated by
LUNAR’s use of the head word of a constituent as the sole source of
features for the testing of semantic conditions in the left-hand sides of
rules. To be generally adequate, it seems that semantic tests should be
applied to the interpretation of a phrase, not just its syntactic structure
(and especially not just its head). Some of the problems with the approx-
imate approach became apparent when LUNAR first began to handle
conjoined phrases. For example, it’s simple semantic tests were no longer
adequate when, instead of a single noun phrase of type X, a conjunction
was encountered. This was due to a prior decision that the head of a
conjoined phrase should be the conjunction operator (e.g., AND), since
a constituent should have a unique head and there is no other unique

NATURAL LANGUAGE QUESTION ANSWERING 65

candidate in a coordinate conjunction. However, since a conjunction
operator would never have the semantic features expected by a rule,
selectional restrictions applied to the head would not work.

A possible solution to this problem is to define the semantic features
of a conjoined phrase to be the intersection of the features of its individual
conjuncts. This has the attractive feature of enforcing some of the well-
known parallelism constraints on conjunctions in English (i.e., conjoined
constituents should be of like kind or similar in some respect). However,
this solution is again only an approximation of what is required to fully
model parallelism constraints. For example, it does not consider factors
of size or complexity of the conjuncts. Further experience with such a
model will almost certainly uncover still more problems.

Another example where obtaining the features from the head alone is
inadequate involves noun phrases in which an adjective modifying the
head contributes essential information (e.g., obtaining a feature +TOY
from the phrase “toy gun”). In general, semantic selectional restrictions
seem to require intensional models of potential referents rather than just
syntactic structures. (In fact, their applying to such models is really the
only justification for calling such constraints “semantic.”) In my paper
“Meaning and Machines” (Woods, 1973c), I discuss more fully the ne-
cessity for invoking models of semantic reference for correctly dealing
with such restrictions.

More seriously, the whole treatment of selectional restrictions as pre-
requisites for meaningfulness is not quite correct, and the details of
making selectional restrictions work correctly in various contexts such
as modal sentences (especially assertions of impossibility) are far from
worked out. For example, there is nothing wrong with the assertion
“Rocks cannot love people” even if there seems to be something odd
about “the rock loved John.” Again, Woods (1973~) discusses such
problems more fully.

10.2 Modifier Placement

Another area in which LUNAR’S solution to a problem was less than
general is in the interpretation of modifiers that are syntactically ambig-
uous as to what they modify. For example, in the sentence “Give me the
average analysis of breccias for all major elements,” there are at least
three syntactic possibilities for the modifier “for all major elements” (it
can modify the phrases headed by “breccias,” “analysis,” or “give”).
In this case, our understanding of the semantics of the situation tells us
that it modifies “analysis,” since one can analyze a sample for an ele-
ment, while “breccias for all major elements” does not make sense.

W. A. WOODS

Without a semantic understanding of the situation, the computer has no
criteria to select which of these three cases to use.

One of the roles that one might like the syntactic component to play
in a language understanding system would be to make the appropriate
grouping of a movable modifier with the phrase it modifies, so that the
subsequent semantic interpretation rules will find the constituent where
they would like it to be. However, since there is not always enough
information available to the parser to make this decision on the basis of
syntactic information alone, this would mean requiring the parser to
generate all of the alternatives, from which the semantic interpreter
would then make the choice. This in turn would mean that the interpreter
would have to spend effort typing to interpret a wrong parsing, only to
have to throw it away and start over again on a new one. It would be
better for the parser to call upon semantic knowledge earlier in the
process, while it is still trying to enumerate the alternative possible
locations for the movable modifier. The question it would ask at this
point would simply be whether a given phrase can take the kind of
modifier in question, rather than a complete attempt to interpret each
possibility.

10.2.1 Selective Modifier Placement

In general, the ATN grammars used in LUNAR tend to minimize the
amount of unnecessary case analysis of alternative possible parsings by
keeping common parts of different alternatives merged until the point in
the sentence is reached where they make different predictions. At such
a point, the choice between alternatives is frequently determined by
having only one of their predictions satisfied. However, one place where
this kind of factoring does not significantly constrain the branching of
possibilities is at the end of a constituent where the grammar permits
optional additional modifiers (e.g., prepositional phrase modifiers at the
end of a noun phrase, as in the above example). Here. the alternatives
of continuing to pick up modifiers at the same level and popping to a
higher level have to be considered separately. If when the alternative of
popping a constituent is chosen and the construction at the higher level
can also take the same kind of modifier as the lower constituent, then a
real ambiguity will result unless some restriction makes the modifier
compatible with only one of the alternatives.

The LUNAR parser contains a facility called “selective modifier place-
ment” for dealing with such “movable modifiers.” When this facility is
enabled, each time a movable modifier is constructed, the parser returns
to the level that pushed for it to see if the configuration that caused the

NATURAL LANGUAGE QUESTION ANSWERING 67

push could also have popped to a higher level and, if so, whether that
higher level could also have pushed for the same thing. It repeats this
process until it has gathered up all of the levels that could possibly
(syntactically) use the modifier. It then asks semantic questions to rank
order the possibilities, choosing the most likely one, and generating
alternatives for the others. In a classic example, ‘‘.I saw the man in the
park with a telescope,” the phrase “in the park” could modify either
“man” or “see,” and “with a telescope” could modify either “park,”

man,” or “see” (with the possible exception, depending on your dia-
lect, of forbidding “with a telescope” from modifying ‘‘man” if “in the
park” is interpreted as modifying “see”). The selective modifier place-
ment facility chooses the interpretation “see with a telescope” and “man
in the park” when given information that one can see with an optical
instrument. Woods (1973a) describes this facility for selective modifier
placement more fully.

“

10.2.2 Using Misplaced Modifiers

Although the selective modifier placement facility in LUNAR’S parser
is probably very close to the right solution to this problem of movable
modifiers, the mechanism as implemented requires the semantic infor-
mation that it uses to be organized in a slightly different form from that
used in the semantic interpretation rules. Rather than duplicate the in-
formation, LUNAR’S demonstration prototype used a different approach.
In this sytem, the grammar determined an initial placement of such
modifiers based solely on what prepositions a given head noun could
take as modifiers. Subject to this constraint, the movable modifier was
parsed as modifying the nearest preceding constituent (i.e., as deep in
the parse tree as premitted by the constraint). Subsequently during in-
terpretation, if the semantic interpreter failed to find a needed constituent
at the level it wanted it, it would look for it attached to more deeply
embedded levels in the tree.

If this procedure for looking for misplaced modifiers had been handled
by a general mechanism for looking for misplaced constituents subject to
appropriate syntactic and semantic guidance, it would provide an alter-
native approach of comparable generality to selective modifier place-
ment, raising an interesting set of questions as to the relative advantages
of the two approaches. In the demonstration prototype, however, it was
handled by the simple expedient of using disjunctive templates in the
rules to look for a constituent in each of the places where it might occur.
Each rule thus had to be individually tailored to look for its needed
constituents wherever they might occur. Problems were also present in

W. A. WOODS

making sure that all modifiers were used by some rule and avoiding
duplicate use of the same modifier more than once.

A number of such decisions were made in LUNAR for the expedient
of getting it working, and are not necessarily of theoretical interest. This
particular one is mentioned here because of its suggestion of a possible
way to handle a problem, and also to illustrate the difference between
solving a problem in general and patching a system up to handle a few
cases.

10.3 Multiple Uses of Constituents

Alluded to above in the discussion of LUNAR’S method of looking for
misplaced modifiers was the potential for several different rules to use
the same constituent for different purposes. In general, one expects a
given modifier to have only one function in a sentence. However, this is
not always the case. For example, an interesting characteristic of the
“average” operator is the special use of a prepositional phrase with the
preposition “over,” which usurps one of the arguments of the function
being averaged. Specifically, in “the average concentration of silicon
over the breccias,” the prepositional phrase “over the breccias” is
clearly an argument to the average function, specifying the class of
objects over which the average is to be computed. However, it is also
redundantly specifying the variable that will fill the constituent slot of
the concentration schema, even though it does not have any of the
prepositions that would normally specify this slot. The semantic inter-
pretation framework that the LUNAR system embodies does not antic-
ipate the simultaneous use of a constituent as a part of two different
operators in this fashion (although the implemented mechanism does not
forbid it).

The rules in the implemented LUNAR system deal with this problem
(as opposed to solving it) by permitting the prepositional phrase with
“over” to modify concentration rather than average. This choice was
made because the average operator is interpretable without a specific
“over” modifier, whereas the concentration is not interpretable without
a constituent whose concentration is being measured. However, this
“solution” leaves us without any constraint that “over” can only occur
with averages. Consequently, phrases such as “the concentration of
silicon over S10046” would be acceptable. Such lack of constraint is
generally not a serious problem in very restricted topic domains and
with relatively simple sentences, because users are unlikely to use one
of the unacceptable constructions. However, as the complexity of the
language increases, especially with the introduction of constructions such

NATURAL LANGUAGE QUESTION ANSWERING 69

as reduced relative clauses and conjunction reduction, the possibility
increases that some of these unacceptable sequences may be posed as
partial parsings of an otherwise acceptable sentence, and can either result
in unintended parsings or long excursions into spurious garden path
interpretations.

This kind of ad hoc “solution” to the “average ... over ...” problem is
typical of the compromises made in many natural language systems, and
is brought up here to illustrate the wrong way to attack a problem. It
contrasts strongly with the kinds of general techniques that typify
LUNAR’S solutions to other problems.

10.4 Ellipsis

Possibly the correct solution to the problem of “average ... over ...” is
one that handles a general class of ellipsis-those cases where an argu-
ment is omitted because it can be inferred from information available
elsewhere in a sentence. In this account, the “over” phrase would be an
argument to “average” and the subordinate “concentration” phrase
would have an ellipsed specification of the constituent being measured.

A similar problem with ellipsis occurs in the flight schedules context,
where sentences such as

List the departure time from Boston of every TWA flight to Chicago.

would be interpreted literally as asking for the Boston departure times of
all TWA flights that go to Chicago, regardless of whether they even go
through Boston. To express the intended request without ellipsis, the
user would have to say

List the departure time from Boston of every TWA flightfrom Boston
to Chicago.

As I pointed out in my thesis (Woods, 1967), the information in the
semantic rules provides the necessary information for the first step in
treating such ellipsis-the recognition that something is missing. Capi-
talizing on this, however, requires a rule-matching component that is able
to find and remember the closest matching rule when no rule matches
fully, and to provide specifications of the missing pieces to be used by
some search routine that tries to recover the ellipsis. This latter routine
would have to examine the rest of the structure of the sentence, and
perhaps some of the discourse history, to determine if there are appro-
priate contextually specified fillers to use. Research problems associated
with such ellipsis have to do with the resolution of alternative possible
fillers that meet the description, finding potential fillers that are not

70 W. A. WOODS

explicitly mentioned elsewhere but must be inferred, and characterizing
the regions of the surrounding context that can legitimately provide an-
tecedents for ellipsis (e.g., can they be extracted out of subordinate
relative clauses that do not dominate the occurrence of the ellipsis?).

10.5 Plausibility of Alternative interpretations

In general, the correct way to handle many of the potential ambiguities
that arise in English seems to be to construct representations of alter-
native interpretations, or alternative parts of interpretations, and evaluate
the alternatives for their relative plausibility. LUNAR does not contain
such a facility. Instead, it makes the best effort it can to resolve ambi-
guities, given what it knows about general rules for preferred parsings,
criteria for preferred interpretations, and specific semantic selectional
restrictions for nouns and verbs. LUNAR does quite well within these
constraints in handling a wide variety of constructions. This is successful
largely because of the limited nature of the subject matter and consequent
implicit constraints on the kinds of questions and statements that are
sensible. However, a variety of phenomena seem to require a more
general plausibility evaluator to choose between alternatives. If one had
such an evaluator of relative plausibility, the mechanisms used in
LUNAR would be adequate to generate the necessary alternatives.

10.6 Anaphoric Reference
Anaphoric reference is another problem area in which LUNAR’s treat-

ment does not embody a sufficiently general solution. Every time an
interpretation is constructed, LUNAR makes entries in a discourse di-
rectory for each constituent that may be subsequently referred to ana-
phorically. Each entry consists of the original syntactic structure of a
phrase, plus a slightly modified form of its semantic interpretation. In
response to an anaphoric expression such as “it” and “that sample,”
LUNAR searches this directory for the most recent possible antecedent
and reuses its previous interpretation.

LUNAR’s anaphoric reference facility is fairly sophisticated, including
the possibility to refer to an object that is dependent on another quantified
object, in which case it will bring forward both quantifiers into the
interpretation of the new sentence (e.g., “What is the silicon content of
each volcanic sample?” “What is its magnesium concentration?”). It
also handles certain cases of anaphora where only part of the intensional
description of a previous phrase is reused (e.g., “What is the concentra-
tion of silicon in breccias?” “What is it in volcanics?”). However, this
facility contains a number of loose ends. One of the most serious is that

NATURAL LANGUAGE QUESTION ANSWERING 71

only the phrases typed in by the user are available for anaphoric refer-
ence, while the potential antecedents implied by the responses of the
system are not (responses were usually not expressed in English, and in
any case were not entered into the discourse directory). Anaphoric ref-
erence in general contains some very deep problems, some of which are
revealed in LUNAR. Nash-Webber (1976, 1977), Nash-Webber and Rei-
ter (1977), and Webber (1978) discuss these problems in detail.

10.7 Ill-Formed Input and Partial Interpretation

One of the problems that face a real user of a natural language under-
standing system is that not everything that he tries to say to the system
is understandable to it. LUNAR tried to cope with this problem by having
a grammar sufficiently comprehensive that it would understand every-
thing a lunar geologist might ask about its data base. The system actually
came fairly close to doing that. In other systems, such as the SOPHIE
system of Brown and Burton (1975), this has been achieved even more
completely. In a limited topic domain, this can be done by systematically
extending the range of the system’s understanding every time a sentence
is encountered that is not understood, until eventually a virtual closure
is obtained. Unfortunately, in less topic-specific systems, it is more
difficult to reach this kind of closure, and in such cases it would be
desirable for the system to provide a user with some partial analysis of
his request to at least help him develop a model of what the machine
does and does not understand.

LUNAR contains no facility for such partial understanding, although
it does have a rudimentary facility to comment about modifiers that it
does not understand in an otherwise understandable sentence and to
notify the user of a phrase that it does not understand in a sentence that
it has managed to parse but cannot interpret. Given the size of its vo-
cabulary and the extensiveness of its grammar, there are large classes of
sentences that LUNAR can parse but not understand. For these,
LUNAR will at least inform the user of the first phrase that it encounters
that it cannot understand. However, it cannot respond to questions about
its range of understanding or be of much help to the user in finding out
whether (and, if so, how) one can rephrase a request to make it under-
standable. More seriously, if a sentence fails to parse (a less common
occurrence, but not unusual), LUNAR provides only the cryptic infor-
mation that it could not parse the input. The reason for this is as follows.

If the user has used words that are not in its dictionary, LUNAR of
course informs him of this fact and the problem is clear. If, however, the
user has used known words in a way that does not parse, all LUNAR

72 W. A. WOODS

knows is that it has tried all of its possible ways to parse the input and
none of them succeeded. In general, the parser has followed a large
number of alternative parsing paths, each of which has gotten some
distance through the input sentence before reaching an inconsistency.
LUNAR in fact keeps track of each blocked path, and even knows which
one of them has gotten the farthest through the sentence. However,
experience has shown that there is no reason to expect this longest partial
parse path to be correct. In general, the mistake has occurred at some
earlier point, after which the grammar has continued to fit words into its
false hypothesis for some unknown distance before an inconsistency
arises. Beyond simply printing out the words used in this longest path
(letting the user guess what grammatical characteristic of his sentence
was unknown to the computer) there is no obvious solution to this
problem. In this respect, a language with a deterministic grammar has an
advantage over natural English, since there will only be one such parse
path. In that case, when the parser blocks, there is no question about
which path was best.

Note that there is no problem here in handling any particular case or
anticipated situation. Arbitrary classes of grammatical violations can be
anticipated and entered into the grammar (usually with an associated
penalty to keep them from interfering with completely grammatical in-
terpretations). Such sentences will no longer be a problem. What we are
concerned with here requires a system with an understanding of its own
understanding, and an ability to converse with a user about the meaning
and use of words and constructions. Such a system would be highly
desirable, but is far from realization at present. The grammar information
system discussed above, which knows about its own grammar and can
talk about states and transitions in the grammar, is a long way from being
able to help a user in this situation.

One technique from the HWIM speech understanding system (Woods
rt d., 1976) that could help in such a situation is to find maximally
consistent islands in the word string using a bidirectional ATN parser
that can parse any fragment of a correct sentence from the middle out.
One could then search in the regions where such islands abut or overlap
for possible transitions that could connect the two.

A special case of the ungrammatical sentence problem is the case of
a mistyped word. If the misspelling results in an unknown word, then
the problem is simple; when LUNAR informs the user of an unknown
word, it also gives him the opportunity to change it and continue. How-
ever, if the misspelling results in another legal word, then the system is
likely to go into the state discussed above, where all parsing paths fail
and there is little the system can say about what went wrong. In this

NATURAL LANGUAGE QUESTION ANSWERING 73

case, the user can probably find his mistake by checking the sentence he
has typed, but sometimes a mistake will be subtle and overlooked. Again,
some of the techniques from the HWIM system could be used here.
Specifically, HWIM’s dictionary look-up is such that it finds all words
that are sufficiently similar to the input acoustics and provides multiple
alternatives with differing scores, depending on how well they agree with
the input. An identical technique can enumerate possible known words
that could have misspellings corresponding to the typed input, with scores
depending on the likelihoods of those misspellings. These alternatives
would then sit on a shelf to be tried if no parsing using the words as
typed were found.

10.8 Intensional Inference

As discussed previously, the LUNAR prototype deals only with ex-
tensional inferences, answering questions with quantifiers by explicitly
enumerating the members of the range and testing propositions for indi-
vidual members. LUNAR contains a good set of techniques for such
inference, such as the use of general enumeration functions and smart
quantifiers. However, although this is a very efficient mode of inference,
it is not appropriate for many types of questions. The ability to deal with
more complex types of data entities, even such specialized things as
descriptions of shape and textural features of the lunar samples, will
require the use of intensional inference procedures. For this reason,
LUNAR’s MRL was designed to be compatible with both intensional
and extensional inference. Intensional inference is necessary for any type
of question whose answer requires inference from general facts, rather
than mere retrieval or aggregation of low-level observations. In particu-
lar, it is necessary in any system that is to accept input of new information
in anything other than a rigid stylized format.

Although LUNAR contained some rudimentary facilities for adding
new lines to its chemical analysis data base and for editing such entries,
it contained no facility for understanding, storing, or subsequently using
general facts and information. For example, a sentence such as “All
samples contain silicon” is interpreted by LUNAR as an assertion to be
tested and either affirmed or denied. It is not stored as a fact to be used
subsequently. However, there is nothing in LUNAR’s design that pro-
hibits such storage of facts. In particular, a simple PRERULE for dec-
larative sentences with a right-hand side (PRED (STORE (# 0
SRULES))) could generate interpretations that would store facts in an
intensional data base (where STORE is assumed to be a function that
stores facts in an intensional data base).

74 W. A. WOODS

The function STORE could interface to any mechanical inference sys-
tem to store its argument as an axiom or rule. For example, with a
resolution theorem proving system such as Green’s QA3 (Green, 1969),
STORE could transform its argument from its given (extended) predicate
calculus form into clause form and enter the resulting clauses into an
indexed data base of axioms. TEST could then be extended to try infer-
ring the truth of its argument proposition from such axioms either prior
to, or after, attempting to answer the question extensionally. TEST could
in fact be made smart enough to decide which mode of inference to try
first on the basis of characteristics of the proposition being tested. More-
over, procedures defining individual predicates and functions could also
call the inference component directly. For example, the predicate
ABOUT that relates documents to topics could call the inference facility
to determine whether a document is about a given topic due to one of its
stored topics subsuming or being subsumed by the one in question.

The incorporation of intensional inference into the LUNAR framework
is thus a simple matter of writing a few interfacing functions to add
axioms to, and call for inferences from, some mechanical inference fa-
cility (assuming one has the necessary inference system). The problems
of constructing such an inference facility to efficiently handle the kinds
of inferences that would generally be required is not trivial, but that is
another problem beyond the scope of this paper. A number of other
natural language systems have capabilities for natural language input of
facts (e.g., Winograd, 1972), but few have very powerful inference facil-
ities for their subsequent use.

Among the shifts in emphasis that would probably be made in a se-
mantic interpretation system to permit extensive intensional inference
would be increasing attention to the notational structure of intensional
entities to make them more amenable to inspection by various computer
programs (as opposed to being perspicuous to a human). The effective-
ness of the MRL used in LUNAR derives from its overall way of decom-
posing meanings into constituent parts, but is not particularly sensitive
to notational variations that preserve this decomposition. When such
MRL expressions are used as data objects by intensional processors,
internal notational changes may be desired to facilitate such things as
indexing facts and rules, relating more general facts to more specific
ones, and making the inspection of MRL expressions as data objects
more efficient for the processes that operate on them. In particular, one
might want to represent the MRL expressions in some network form
such as that described in Woods (1975b) to make them accessible by
associative retrieval.

However, whatever notational variations one might want to adopt for

NATURAL LANGUAGE QUESTION ANSWERING 75

increasing the efficiency of intensional processing, it should not be nec-
essary, and is certaintly not desirable, to sacrifice the fundamental un-
derstanding of the semantics of the notation and the kinds of structural
decompositions of meanings that have been evolved in LUNAR and her
sister systems.

11. SyntacticlSemantic Interactions

A very important question, for which LUNAR’S techniques are clearly
not the general answer, has to do with the relative roles of syntactic and
semantic information in sentence understanding. Since this is an issue of
considerable complexity and confusion, I will devote the remainder of
this paper to discussing the issues as I currently understand them.

The question of how syntax and semantics should interact is one that
has been approached in a variety of ways. Even the systems discussed
above contain representatives of two extreme approaches. LUNAR ex-
emplifies one extreme: it produces a complete syntactic representation
which is only then given to a semantic interpretation component for
interpretation. TRIPSYS, on the other hand, combines the entire process
of parsing and semantic interpretation in a grammar that produces se-
mantic interpretations directly without any intermediate syntactic rep-
resentation.

Before proceeding further in this discussion, let me first review the
role of syntactic information in the process of interpretation:

11 . I The Role of Syntactic Structure

The role of a syntactic parsing in the overall process of interpreting
the meaning of sentences includes answering such questions as “What
is the subject noun phrase?”, “What is the main verb of the clause?”,
“What determiner is used in this noun phrase?”, etc.-all of this is
necessary input information for the semantic interpretation decisions.
Parsing is necessary to answer these questions because, in general, the
answers cannot be determined by mere local tests in the input string
(such as looking at the following or preceding word). Instead, such an-
swers must be tentatively hypothesized and then checked out by discov-
ering whether the given hypothesis is consistent with some complete
analysis of the sentence. (The existence of “garden path” sentences
whose initial portion temporarily misleads a reader into a false expecta-
tion about the meaning are convincing evidence that such decisions can-
not be made locally.)

Occasionally, the interpretation of a sentence depends on which of

76 W. A. WOODS

several alternative possible parsings of the sentence the user intends (i.e.,
the sentence is ambiguous). In this case the parser must perform the case
analysis required to separate the alternative possibilities so they can be
considered individually. A syntactic parse tree, as used in LUNAR and
similar systems, represents a concise total description that answers all
questions about the grouping and interrelationships among words for a
particular hypothesized parsing of a sentence. As such, it represents an
example of what R. Bobrow (Bobrow and Brown, 1975) calls a “contin-
gent knowledge structure,” an intermediate knowledge structure that is
synthesized from an input to summarize fundamental information from
which a large class of related questions can then be efficiently inferred.
In general, there is an advantage to using a separate parsing phase to
discover and concisely represent these syntactic relationships, since
many different semantic rules may ask essentially the same questions.
One would not want to duplicate the processing necessary to answer
them repeatedly from scratch.

In addition to providing a concise description of the interrelationships
among words, the parse trees can serve an additional role by providing
levels of grouping that will control the semantic interpretation process,
assigning nodes to each of the phrases that behave as modular constitu-
ents of the overall semantic interpretation. The semantic interpreter then
walks this tree structure, assigning interpretations to the nodes corre-
sponding to phrases that the parser has grouped together. The syntax
trees assigned by the grammar thus serve as a control structure for the
semantic interpretation.

For historical reasons, LUNAR’S grammar constructed syntactic rep-
resentations as close as possible to those that were advocated at the time
by transformational linguists as deep structures for English sentences
(Stockwell et a l . , 1968). The complex patterns of semantic rules in
LUNAR and the multiple-phase interpretation are partly mechanisms
that were designed to provide additional control information that was not
present in those tree structures. An alternative approach could have been
to modify the syntactic structures to gain the same effect (see below).
The approach that was taken provides maximum flexibility for applying
a set of semantic interpretation rules to an existing grammar. It also
provides a good pedagogical device for describing interpretation rules
and strategies, independent of the various syntactic details that stand
between the actual surface word strings and the parse structures assigned
by the grammar. However, the use of such powerful rules introduces a
cost in execution time that would not be required by a system that
adapted the grammar more to the requirements of semantic interpreta-
tion.

NATURAL LANGUAGE QUESTION ANSWERING 77

11.2 Grammar Induced Phasing of Interpretation

As mentioned above, most of the control of multiple phase interpre-
tation that is done in LUNAR by means of successive calls to the inter-
preter with different TYPEFLAGS could be handled by having the
parser assign a separate node for each of the phases of interpretation. If
this were done, the phasing of interpretation would be governed entirely
by the structure of the tree. For example, one could have designed a
grammar to assign a structure to negated sentences that looks something
like

S DCL
NEG
S NPNPRS10046

VP V CONTAIN
NP DET NIL

N SILICON
NU SG

instead of

S DCL
NEG
NP NPR S10046
VP VCONTAIN

N P DET NIL
N SILICON
NU SG.

In such a structure, there is a node in the tree structure to receive the
interpretation of the constituent unnegated sentence, and thus the sepa-
rate phasing of the PRERULES and the SRULES used in LUNAR would
be determined by the structure of the tree. Similarly, noun phrases could
be structured something like

NP DET THE
NU SG
NOM NOM ADJ N SILICON

NOM N CONCENTRATION

NP NPR S10046
PP PREP IN

78 W. A. WOODS

instead of the structure

NP DET THE
ADJ N SILICON
N CONCENTRATION
NU SG
PP PREPIN

NP NPR 510046

which is used in the LUNAR grammar. In such a structure, the nested
NOM phrases would receive the interpretation of the head noun plus
modifiers by picking up modifiers one at a time.

It is not immediately obvious, given LUNAR’S separation of syntactic
and semantic operations, which of the two ways of introducing the phas-
ing is most efficient. Introducing phasing via syntax requires it to be done
without the benefit of some of the information that is available at inter-
pretation time, so that there is the potential of having to generate alter-
native syntactic representations for the interpreter to later choose be-
tween. On the other hand, doing it with the semantic interpretation rules
requires extra machinery in the interpreter (but does not seem to intro-
duce much extra run-time computation).

One might argue for the first kind of structure in the above examples
on syntactic grounds alone. If this is done, then the efficiency issue just
discussed is simply one more argument. If it turns out that the preferred
structure for linguistic reasons is also the most efficient for interpretation,
that would be a nice result. Whether this is true or not, however, is not
clear to me at present.

11.3 Semantic Interpretation while Parsing

The previous discussion illustrates some of the disadvantages of the
separation of parsing and semantic interpretation phases in the LUNAR
system. The discussion of placement of movable modifiers illustrates
another. In general, there are a variety of places during parsing where
the use of semantic information can provide guidance that is otherwise
not available, thus limiting the number of alternative hypothetical parse
paths considered by the parser. It has frequently been argued that per-
forming semantic interpretation during parsing is more efficient than
performing it later by virtue of this pruning of parse paths. However, the
issue is not quite as simple as this argument makes it appear. Against
this savings, one must weigh the cost of doing semantic interpretation on
partial parse paths that will eventually fail for syntactic reasons. Which
of the two approaches is superior in this respect depends on (1) the

NATURAL LANGUAGE QUESTION ANSWERING 79

relative costs of doing semantic versus syntactic tests and (2) which of
these two sources of knowledge provides the most constraint. Both of
these factors will vary from one system to another, depending on the
fluency of their grammars and the scope of their semantics.

At one point, a switch was inserted in the UNAR grammar that would
call for the immediate interpretation of an 3 newly formed constituent
rather than wait for a complete parse tree to be formed. This turned out
not to have an efficiency advantage. In fact, sentences took longer to
process (i.e., parse and interpret). This was due in part to the fact that
LUNAR’S grammar did a good job of selecting the right parse without
semantic guidance. In such circumstances, semantic interpretations do
not help to reject incorrect paths. Instead, they merely introduce an extra
cost due to interpretations performed on partial parse paths that later
fail. Moreover, given LUNAR’S rules, there are constituents for which
special interpretations are required by higher constructions (e.g., with
TYPEFLAG SET or TOPIC). Since bottom-up interpretation may not
know how a higher construction will want to interpret a given constituent,
it must either make as assumption (which may usually be right, but
occasionally will have to be changed), or else make all possible interpre-
tations. Either case will require more interpretation than waiting for a
complete tree to be formed and then doing only the interpretation re-
quired. All of these considerations make semantic interpretation during
parsing less desirable unless some positive benefit of early semantic
guidance outweighs these costs.

11.4 Top-Down versus Bottom-Up Interpretation

In the experiment described above, in which LUNAR was modified to
perform bottom-up interpretation during parsing, the dilemma of handling
context-dependent interpretations was raised. In those experiments, the
default assumption was made to interpret every noun phrase with TY-
PEFLAG NIL during the bottom-up phase. In cases where a higher
construction required some other interpretation, reinterpretation was
called for at that point in the usual top-down mode. Since LUNAR
maintains a record of previous interpretations that have been done on a
node to avoid repeating an interpretation, it was possible to efficiently
use interpretations that were made bottom-up when they happened to be
the kind required, while performaing new ones if needed.

An alternative approach to this problem of bottom-up interpretation in
context is to make a default interpretation that preserves enough infor-
mation so that it can be modified to fit unexpected contexts without
actually having to redo the interpretation. This would be similar to the

80 W. A. WOODS

kind of thing that SETGEN (in the right-hand side of the D:SET rule)
does to the quantifiers it picks up to turn them into UNIONS. In the
HERMES grammar (Ash et af., 1977), R. Bobrow uses this approach,
which he calls “coercion” (intuitively, forcing the interpretation of a
constituent to be the kind that is expected). In this case, when the higher
construction wants the interpretation of a constituent in some mode other
than the one that has been already done, it asks whether the existing one
can be coerced into the kind that it wants rather than trying to reinterpret
the original phrase.

Many of these questions of top-down versus bottom-up interpretation,
syntax-only parsing before semantic interpretation or vice versa (or both
together), do not have clear cut answers. In general, there is a tension
between doing work on a given portion of a sentence in a way that is
context free (so that the work can be shared by different alternative
hypotheses at a higher level) and doing it in the context of a specific
hypothesis (so that the most leverage can be gained from that hypothesis
to prune the alternatives at the lower level). It is not yet clear whether
one of the extremes or some intermediate position is optimal.

11.5 Pragmatic Grammars
One thing that should be borne in mind when discussing the role of

grammars is that it is not necessary that the grammar characterize exactly
those sentences that a grammarian would consider correct. The formal
grammar used by a system can characterize sentences as the user would
be likely to say them, including sentences that a grammarian might call
ungrammatical. For example, LUNAR accepts isolated noun phrases as
acceptable utterances, implicitly governed by an operator “give me.”

In the classical division of problems of meaning into the areas of
syntax, semantics, and pragmatics, the latter term is used to denote those
aspects of meaning determined not by general semantic rules, but as
aspects of the current situation, one’s knowledge of the speaker, etc. For
example, in situations of irony, a speaker says exactly the opposite of
what he means. Likewise, certain apparent questions should in fact be
interpreted as commands or as other requests (e.g., “Do you have the
time?” is usually a “polite” way of asking “What time is it?”). More-
over, certain ungrammatical utterances nevertheless have a meaning that
can be inferred from context. In general, the ultimate product of language
understanding is the pragmatic interpretation of the utterance in context.
This interpretation, while not necessarily requiring a syntactically and
semantically correct input sentence, nevertheless depends on an under-
standing of normal syntax and semantics.

NATURAL LANGUAGE QUESTION ANSWERING 81

In LUNAR, there is no systematic treatment of pragmantic issues,
although in some cases, pragmatic considerations as well as semantic
ones were used in formulating its interpretation rules. For example, the
rule that interprets the head “analysis,” when it finds no specification of
the elements to be measured, makes a default assumption that the major
elements are intended. This is due to the pragmatic fact that (according
to our geologist informant) this is what a geologist would want to see if
he made such a request, not because that is what the request actually
means. In this way, LUNAR can handle a small number of anticipated
pragmantic situations directly in its rules.

In TRIPSYS, a small step toward including pragmatics in the grammar
was taken. The TRIPSYS grammar takes into account not only semantic
information such as class membership and selectional restrictions of
words, but also pragmatic information. This includes factual world knowl-
edge such as what cities are in which states, actual first and last names
of people, and discourse history information, such as whether appropriate
referents exist for anaphoric expressions. The TRIPSYS system is only
beginning to explore these issues, and has not begun to develop a general
system for pragmatic interpretation. Much more work remains to be done
in this area, and interest in it seems to be building as our mastery of the
more basic syntactic and semantic issues matures.

The “pragmatic” grammar of TRIPSYS is only one exploration of a
philosophy of combined syntactic and semantic grammars that has arisen
independently in several places. Other similar uses of ATN or ATN-like
grammars combining syntactic and semantic (and possibly pragmatic)
information are the “Semantic Grammars” of Burton (1976), the “Per-
formance Grammars” of Robinson (1975), the SHRDLU system of Win-
ograd (1972), and the HERMES grammar of R. Bobrow (Ash et d.,
1977).

11.6 Semantic Interpretation in the Grammar

In separating parsing and semantic interpretation into two separate
processes (whether performed concurrently or in separate phases),
LUNAR gains several advantages and also several disadvantages. On
the positive side, one obtains a syntactic characterization of a sizable
subset of English that is independent of a specific topic domain and hence
transferable to other applications. All of the domain-specific information
is contained in the dictionaries and the semantic interpretation rules. On
the other hand, there is a conceptual expense in determining what syn-
tactic structure to use for many of the less standard constructions. One
would like such structures to be somehow motivated by linguistic prin-

W. A. WOODS

ciples and yet, at the same time, have them facilitate subsequent inter-
pretation. In many cases, the desired interpretation is more clear to the
grammar designer than is a suitable syntactic representation. In a number
of situations, such as those discussed previously for handling wh-ques-
tions with conjunction reduction and for handling averages, I have found
it desirable to change what had initially seemed a suitable syntactic
representation in order to facilitate subsequent semantic interpretation.
If semantic interpretations were to be produced directly by the grammar
instead of using an intermediate syntactic representation, then such prob-
lems would be avoided.

The integration of semantic interpretation rules into the grammar could
be done in a number of ways, one of which would be to develop a rule
compiler that would use the templates of rules such as LUNAR’S to
determine where in the grammar to insert the rule. Another would be to
write the interpretation rules into the grammar in the first place. This
latter is the approach that is taken in the TRIPSYS system. It seems
clearly an appropriate thing to do for such rules as the PRERULES for
sentences and the DRULES for noun phrases, where the principal infor-
mation used is largely syntactic. For the equivalent of SRULES,
NRULES, and RRULES, writing specific rules into the grammar would
make the grammar itself more topic-specific than one might like. How-
ever, writing generalized rules that apply to large classes of words, using
information from their dictionary entries for word-specific information
such as case frames, selectional restrictions, permitted prepositions, and
corresponding MRL translations, should produce a grammar that is rel-
atively topic-independent. This is the approach taken by Robinson (1975)
and by R. Bobrow (Ash et ul., 1977).

Integrating semantic interpretation with a grammar is not an obvious
overall improvement, since by doing so one gives up features as well as
gaining them. For example, as discussed earlier the “advantage” of using
semantic interpretation to prune parse paths is not always realized. How-
ever, there are some other efficiencies of the combined syntacticheman-
tic grammars that have nothing to do with pruning. One of these is the
avoidance of pattern-matching.

One of the costs of the separate semantic interpretation phase used in
LUNAR is the cost of pattern-matching the rules. Much of this effort is
redundant since the various pieces of information that are accessed by
the rules were mostly available in registers during the parsing process.
From here they were packaged up by actions in the grammar into the
parse tree structures that are passed on to the interpreter. The pattern-
matching in the interpreter recovers these bindings so that the right-hand
side of the rule can use them. If the right-hand side schema of the rule

NATURAL LANGUAGE QUESTION ANSWERING 83

could be executed while these bindings were still available during the
parsing process, considerable computation could be avoided. Moreover,
much of the syntactic information that is checked in the rules is implicitly
available in the states of the grammar by virtue of the fact that the parser
has reached that state (and more of that information could be put into
the states if desired). Thus, in many cases, much of the testing that goes
on in the pattern-matching of rules would be avoided if the right-hand
side of the rule, paired with whatever semantic tests are required, were
inserted as an action at the appropriate points in the grammar.

For example, at certain points in the parsing, the grammar would know
that it had enough information to construct the basic quantifier implied
by the determiner and number of a noun phrase. At a later point, it would
know all of the various modifiers that are being applied to the head noun.
As the necessary pieces arrive, the interpretation can be constructed
incrementally.

The effectiveness of this kind of combined parserlinterpreter depends
partly on the discovery that the kinds of associations of REFS to con-
stituent nodes that are made by LUNAR’S rules are usually references
to direct constituents of the node being interpreted. Thus, they corre-
spond closely to the constituents that are being held in the registers by
the ATN grammar during its parsing. The original semantic rule format
was designed to compensate for rather large potential mismatches be-
tween the structure that a grammar assigns and the structure that the
interpreter would like to have (since it was intended to be a general
facility applicable to any reasonable grammar). When a grammar is spe-
cifically designed to support the kinds of structures required by the
interpreter, this very general “impedance matching” capability of the
rules is not required.

Thus, when fully integrated with the parsing process i n an ATN gram-
mar, the process of semantic interpretation requires fewer computation
steps than when it is done later in a separate phase. This clearly has a
bearing on the previous discussion of the relative costs of syntactic and
semantic processing. Other advantages of this kind of integrated parsing
and interpretation process is that the single nondeterminism mechanism
already present in the parser can be used to handle alternative interpre-
tations of a given syntactic structure, without requiring a separate facility
for finding and handling multiple rule matches. This not only eliminates
extra machinery from the system, but appears to be more efficient. It
also permits a more flexible interaction between the ranking of alternative
syntactic choices and the ranking of alternative choices in semantic in-
terpretation.

A disadvantage of this integrated approach is that the combined syn-

84 W. A. WOODS

tactichemantic grammar is much more domain-specific and less trans-
portable unless clear principles for separating domain-specific from gen-
eral knowledge are followed. Moreover, the fact that a given semantic
constituent can be found in different places by different arcs in the
grammar seems to require separate consideration of the same semantic
operations at different places in the grammar.

11.7 Generating Quantifiers while Parsing

The generation of separate SEM's and QUANT's when performing
interpretation while parsing appears to complicate the integration of the
semantic interpretation into the grammar, but in fact is not difficult. One
can stipulate that any constituent parsed will return a structure that
contains both a SEM and a QUANT as currently assigned by the INTERP
function in LUNAR. The parsing at the next higher level in the grammar
will then accumulate the separate QUANTs from each of the constituents
that it consumes, give them to a SORTQUANT function to determine
the order of nesting, and construct the interpretation of the phrase being
parsed out of the SEM's of the constituent phrases. All of the quantifier
passing operations described previously can be carried out during the
parsing with little difficulty.

One advantage of this procedure is that the job of SORTQUANT is
simplified by the fact that the quantifiers will be given to it in surface
structure order rather than in some order determined by the deep struc-
ture assigned by the grammar. LUNAR'S SORTQUANT function has to
essentially reconstruct surface word order.

12. Conclusions

The LUNAR prototype marks a significant step in the direction of
fluent natural language understanding. Within the range of its data base,
the system permits a scientist to ask questions and request computations
in his own natural English in much the same form as they arise to him
(or at least in much the same form that he would use to communicate
them to another human being). However, although the LUNAR proto-
type exhibits many desired qualities, it is still far from fully achieving its
goal. The knowledge that the current system contains about the use of
English and the corresponding meanings of words and phrases is very
limited outside the range of those English constructions that pertain to
the system's data base of chemical analysis data. This data base has a
very simple structure; indeed it was chosen as an initial data base because

NATURAL LANGUAGE QUESTION ANSWERING 85

its structure was simple and straightforward. For less restricted appli-
cations, such systems will require much greater sophistication in both
the linguistic processing and the underlying semantic representations and
inference mechanisms.

In this paper, I have presented some of the solutions that were devel-
oped in LUNAR (and several related systems) for handling a variety of
problems in semantic interpretation, especially in the interpretation of
quantifiers. These include a meaning representation language (MRL) that
facilitates the uniform interpretation of a wide variety of linguistic con-
structions, the formalization of meanings in terms of procedures that
define truth conditions and carry out actions, efficient techniques for
performing extensional inference, techniques for organizing and applying
semantic rules to construct meaning representations, and techniques for
generating higher quantifiers during interpretation. These latter include
methods for determining the appropriate relative scopes of quantifiers
and their interactions with negation, and for handling their interactions
with operators such as “average.” Other techniques are described for
post-interpretive query optimization and for displaying quantifier de-
pendencies in output.

I have also discussed a number of future directions for research in
natural language understanding, including some questions of the proper
relationship between syntax and semantics, the partial understanding of
“ungrammatical” sentences, and the role of pragmatics. In the first area
especially, I have discussed a number of advantages and disadvantages
of performing semantic interpretation during the parsing process, and
some aspects of the problem of separating domain specific from general
knowledge.

As discussed in several places in the paper, there are a variety of loose
ends and open problems still to be solved in the areas of parsing and
semantic interpretation. However, even in the four systems discussed
here, it is apparent that as the system becomes more ambitious and
extensive in its scope of knowledge, the need for pragmatic considera-
tions in selecting interpretations becomes increasingly important. I be-
lieve that, as a result of increasing understanding of the syntactic and
semantic issues derived from explorations such as the LUNAR system,
the field of computational linguistics is now reaching a sufficient degree
of sophistication to make progress in a more general treatment of prag-
matic issues. In doing so, it will become much more concerned with
general issues of plausible inference and natural deduction, moving the
field of language understanding in the direction of some of the other
traditional areas of artificial intelligence research, such as mechanical
inference and problem solving.

86 W. A. WOODS

ACKNOWLEDGMENTS

Work described in this paper has been supported in part by the following contracts and
grants: National Science Foundation Grant GS-2301: NASA Contract No. NAS9-I I IS;
AKPA Contracts N00014-75-C-0533, N00014-77-C-0378; and ONR Contract N00014-77-C-
037 I .

REFERENCES

Ash, W., Bobrow, R., Grignetti, M., and Hartley, A. (1977). “Intelligent On-Line Assistant
and lu to r System,” Final Tech. Rep.. Rep. No. 3607. Bolt Beranek and Newman,
Cambridge, Massachusetts.

Bobrow, D. G., Murphy. D. P., and Teitelman, W. (1968). “The BBN-LISP System,”
BBN Rep. No. 1677. Bolt Beranek and Newman. Cambridge. Massachusetts.

Bobrow, R. J.. and Brown, J . S. (1975). Systematic understanding: Synthesis, analysis,
and contingent knowledge in specialized understanding systems. In “Representation and
Understanding: Studies in Cognitive Science” (D. Bobrow and A. Collins, eds.), pp.
103-129. Academic Press, New York.

Bohnert, H. G., and Backer, P. 0. (1967). “Automatic English-to-Logic ’Translation in a
Simplified Model. A Study in the Logic of Grammar,” IBM Res. pilp. RC-1744. 1BM
Research, Yorktown Heights, New York.

Brown, J. S.. and Burton, R. K. (1975). Multiple representations of knowledge of tutorial
reasoning. In “Representation and Understanding: Studies in Cognitive Science” (D.
I3ohrow and A. Collins, eds.), pp. 31 1-34’), Academic Press, New York.

Burton, R . (1976). “Semantic Grammar: An Engineering Technique for Constructing Nat-
ural Language Understanding Systems.’’ Rep. No. 3453. Bolt Beranek and Newman.
Cambridge. Massachusetts.

Carnap, K. (1964a). Foundations of logic and mathematics. In “The Structure of Language:
Readings in the Philosophy of Language” (J. Fodor and J. Katz, eds.), pp. 419-436.
Prentice-Hall, Englewood Cliffs, New Jersey.

Carnap, R. (1964b). “Meaning and Necessity.” Univ. of Chicago Press, Chicago, Illinois.
Chomsky, N. (1965). “Aspects of the Theory of Syntax.” MIT Press, Cambridge, Mas-

sac huset t s.
Green, S. (1969). “The Application of Theorem Proving to Question-Answering Systems,”

Tech. Rep. CS 138. Stanford University Artificial Intelligence Project, Stanford, Cali-
fornia.

Nash-Wehher, B. 1.. (1976). Semantic interpretation revisited. Presented at 1976 I n t . Cotif.
C’omput. Lingrtist. (COLING-76), Oftawn. (Available as BBN Rep. No. 3335. Bolt Ber-
anek and Newman, Cambridge, Massachusetts.)

Nash-Webber, B. L. (1977). Inference in an approach to discourse anaphora. Proc8th Atin.
Meet. North Eastern Linguist. Sor. (NELS-8) (K . Ross, ed.), pp. 123-140. University of
Massachusetts, Amherst. (also as Tech. Rep. No. 77. Center for the Study of Reading,
University of Illinois, Urbana.)

Nash-Webber, B. L., and Reiter, R. (1977). Anaphora and logical form: On formal meaning
representations for English. Pruc. I n / . J. Conf. A d f . Intcll . , 5th. MIT, Cambridge, Mass.
pp. 121-131. (Also as Tech. Rep. No. 36. Center for the Study of Reading, University
of Illinois, Urbana and Bolt Beranek and Newman, Cambridge, Massachusetts.)

OAG (1966). “Official Airline Guide,” Quick Reference North American Edition. Standard
reference of the Air Traffic Conference of America.

Reiter, R. (1977). “An Approach to Deductive Question-Answering,” Rep. No. 3649. Bolt
Beranek and Newman, Cambridge, Massachusetts.

NATURAL LANGUAGE QUESTION ANSWERING 87

Robinson, J. A. (1965). A machine-oriented logic based on the resolution principle. J . ACM

Robinson, J. J. (1975). Performance grammars. In “Speech Recognition: Invited Papers
Presented at the 1974 IEEE Symposium” (D. R. Reddy, ed.), pp. 401-427. Academic
Press, New York.

Simmons, R. F. (1965). Answering English questions by computer: A survey. Commun.
ACM 8(1), 53-70.

Stockwell, R. P., Schacter, P., and Partee, B. H. (1968). “Integration of Transformational
Theories on English Syntax,” Rep. ESD-TR-68-419. Electronic Systems Division, L. G.
Hanscom Field, Bedford, Massachusetts.

Webber, B. L. (1978). A formal approach to discourse anaphora. Ph.D. Thesis, Harvard
University, Cambridge, Massachusetts.

Winograd, T. (1972). “Understanding Natural Language.” Academic Press, New York.
Woods, W. A. (1967). “Semantics for a Question-Answering System,’’ Rep. NSF-19.

Harvard University Computation Laboratory, Cambridge, Massachusetts. (Available
from NTIS as PB-176-548.)

Woods, W. A. (1968). Procedural semantics for a question-answering machine. AFIPS
Natl. Compui. Conf. Expo . . Conf. Proc. 33, 457-471.

Woods, W. A. (1969). “Augmented Transition Networks for Natural Language Analysis,”
Rep. No. CS- 1. Aiken Computation Laboratory, Harvard University, Cambridge, Mas-
sachusetts. (Available from NTIS as Microfiche PB-203-527.)

Woods, W. A. (1970). Transition network grammars for natural language analysis. Commun.
ACM 13, 591-602.

Woods, W. A. (1973a). An experimental parsing system for transition network grammars.
In “Natural Language Processing” (R. Rustin, ed.), pp. 111- 154. Algorithmics Press,
New York.

Woods, W. A. (1973b). Progress in natural language understanding: An application to
LUNAR geology. AFIPS Natl . Comput. Conj: E x p o . . Con/.. Proc. 42, 441-450.

Woods, W. A. (1973~). Meaning and machines. In “Computational and Mathematical
Linguistics” (A. Zampolli, ed.), pp. 769-792. Leo S. Olschki, Florence.

Woods, W. A. (1975a). Syntax, semantics, and speech. In “Speech Recognition: Invited
Papers Presented at the 1974 JEEE Symposium” (D. R. Reddy, ed.), pp. 345-400.
Academic Press, New York.

Woods, W. A. (1975b). What’s in a link: Foundations for semantic networks. In “Repre-
sentation and Understanding: Studies in Cognitive Science” (D. Bobrow and A . Collins,
eds.), pp. 35-82. Academic Press, New York.

Woods, W. A., Kaplan, R. M., and Nash-Webber, B. (1972). “The Lunar Sciences Natural
Language Information System: Final Report,” BBN Rep. No. 2378. Bolt Beranek and
Newman, Cambridge, Massachusetts.

Woods, W. A. , Bates, M., Brown, G., Bruce, B., Cook, C., Klovstad, J., Makhoul, J.,
Nash-Webber, B., Schwartz, R., Wolf, J . , and Zue, V. (1976). “Speech Understanding
Systems-Final Report, 30 October 1974 to 29 October 1976,” BBN Rep. No. 3438,
Vols. I-V. Bolt Beranek and Newman, Cambridge, Massachusetts.

12, 23-41.

